
IAR C COMPILER FOR
THE Z80/64180

COPYRIGHT NOTICE
© Copyright 1991-1997IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
C-SPY is a trademark of IAR Systems.
MS-DOS is a trademark of Microsoft Corp.

All other product names are trademarks or registered trademarks of their
respective owners.

Second edition: March 1997

Part number: ICCZ80-2

ABOUT THIS GUIDE
This guide describes how to install and use the IAR C Compiler for the
Zilog Z80, Zilog Z80180 series (referred to as Z8018X), and Hitachi 64180
microprocessors.

This guide is divided into two parts: the first part, IAR Z80/64180
C Compiler, describes those aspects of the C compiler that are specific to
the Z80/64180. The second part, IAR C Compiler - General Features,
describes features common to all IAR C Compilers.

IAR Z80/64180 C COMPILER
This part consists of the following chapters:

The Introduction describes the main features of the IAR C Compiler, and
shows how it fits in with the other IAR development tools.

Getting started then shows how to install the C compiler and its associated
files, and explains the function of these files.

Using the C Compiler describes how to run the Z80/64180 C Compiler, and
gives information about file formats it uses.

The Tutorial illustrates how you might use the C compiler to develop a
series of typical programs, and illustrates some of the compiler's most
important features. It also describes a typical development cycle using the
C compiler.

Configuration then describes how to configure the C compiler for different
requirements.

Data representation describes how the compiler represents each of the C
data types.

Language extensions describes the extended keywords, #pragma keywords,
and intrinsic functions specific to the Z80/64180 C Compiler.

Extended keyword reference then gives reference information about each of
the extended keywords.

ABOUT THIS GUIDE

#pragma directives reference gives information about the #pragma keyword
extensions for the Z80/64180.

Intrinsic junction reference gives information about the intrinsic functions
for the Z80/64180.

Assembly language interface describes the interface between C programs
and assembly language routines.

Z80 command line options describes the additional command line options
in the Z80/64180 C Compiler.

Finally, Z80 diagnostics lists the Z80-specific warning and error messages.

IAR C COMPILER - GENERAL FEATURES
This part consists of the following chapters:

Command line options summary gives a summary of the C compiler
command line options.

Command line options then provides reference information about each
command line option.

General C language extensions describes the C language extensions provided
for all target processors.

C library junctions summary gives an introduction to the C library
functions, and summarizes them according to header file.

C library junctions reference then gives reference information about each
library function.

K&R and ANSI C language definitions describes the differences between
the K&R description of the C language, and the ANSI standard.

Finally Diagnostics lists the compiler warning and error messages.

ABOUT THIS GUIDE

ASSUMPTIONS
This guide assumes that you already have a working knowledge of the
following:

• The Z80, Z8018X or 64180 processor.

• The target processor assembler language.

• MS-DOS or UNIX, depending on your host system.

It does not attempt to describe the C language itself. For a description of
the C language, The CProgrammingLanguageby Kemighan and Richie is
recommended, of which the latest edition also covers ANSI C.

CONVENTIONS
This user guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter What you should type as part of a command.

[opt ion] An optional part of a command.

reference A cross reference to another part of this user guide, or to
another guide.

In this guide K&R is used as an abbreviation for The C Programming
Language by Kemighan and Richie.

ABOUT THIS GUIDE

vi

CONTENTS

IAR Z80/64180 C COMPILER

Introduction 1-1
Key features 1-1
Development system structure 1-3

Getting started 1-5
Installation 1-5
Installed files 1-9

Using the C compiler 1-17
Running the C compiler 1-17
Files 1-17
Checking extended memory 1-20

Tutorial 1-23
Typical development cycle 1-24
Creating a program 1-27
Extending the program 1-35
Adding an interrupt handler 1-39
Using banked memory 1 -42
Modifying CSTARTUP 1-49
Additional examples 1-53

Configuration 1-59
Introduction 1-59
Run-time library 1-60
Linker command file 1-61
Memory model 1-61
Multi-module linking 1-67
Stack size 1-69
Optimization 1-69
Character input and output 1-71
Heap size 1-74
Initialization 1-74

CONTENTS

Data representation 1-77
Data types 1-77
Efficient coding 1-79

Language extensions 1-81
Extended keywords summary 1-81
#pragma directive summary 1-82
Intrinsic function summary 1-83

Extended keyword reference 1-85

#pragma directive reference 1-97

Intrinsic function reference 1-109

Assembly language interface 1-117
Creating a shell 1-117
Calling convention 1-118
Calling assembly routines from C 1-122

Segment reference 1-127

Z80 command line options 1-137

Z80 diagnostics 1-141

IAR C COMPILER - GENERAL FEATURES

Command line options summary 2-1

Command line options 2-5

General C language extensions 2-33

General C library definitions 2-37

Introduction 2-37

C library functions reference 2-45

K&R and ANSI C language definitions 2-139

Diagnostics 2-145
Compilation error messages 2-147
Compilation warning messages 2-166

Index I

IAR Z80/64180
C COMPILER

INTRODUCTION
The IAR Micro Series is a range of integrated development tools that
support a wide choice of target microprocessors. Amongst these tools are
the IAR C Compilers - a family of powerful and fast C compilers.

The IAR C Compiler for the Z80, Z8018X, and 64180 microprocessors
offers the standard features of the C language, plus many extensions
designed to take advantage of specific features of the Z80/64180. The
compiler is supplied with the IAR Assembler for the Z80/64180, with
which it is integrated and shares linker and library manager tools.

KEY FEATURES
The IAR C Compiler for the Z80/64180 offers the following key features:

LANGUAGE FACILITIES
• Conformance to K&R and ANSI specifications.

• Standard library of functions applicable to embedded systems, with
sources included.

• IEEE-compatible floating-point arithmetic.

• Powerful extensions for features specific to Z80, Z8018X, and 64180,
including efficient I/O.

• Generation of fully ROM-compatible code without language
restrictions.

• Linkage of user code with assembly routines.

• Long identifiers - up to 255 significant characters.

• Maximum compatibility with other IAR C Compilers.

INTRODUCTION

PERFORMANCE
• Very fast compilation.

• Memory-based design, avoiding temporary files or overlays.

• Single executable C compiler program file.

• Extensive type-checking at compile time.

• Extensive module interface type checking at link time.

• LINT-like checking of program source.

CODE GENERATION
• Selectable optimization levels for code speed and size.

• Comprehensive output options, including relocatable binary, ASM,
ASM + C,XREF,etc.

• Easy-to-understand error and warning messages.

• Compatibility with C-SPY high-level debugger, simulator and emulator
driver.

• Support for over 20 emulator formats.

TARGET SUPPORT
• 64 Kbyte and banked memory models.

• SFR type for I/O, with header files. Zilog Z80180, Z80181, Z80182,
and Hitachi HD64180.

• Interrupt functions requiring no assembly language.

• A #p r a g m a directive to maintain portability while using Z80
extensions.

INTRODUCTION

DEVELOPMENT SYSTEM
STRUCTURE
The following diagram shows how the IAR C Compiler is used as part of a
complete IAR development system:

C Source

Text editor

Z80/64180
C Compiler

Assembler source

Z80/64180
Assembler

XLIB Librarian

Linker
command file

Object
module

XLINK Linker

with debug
information

Executable code
with

1 optimisation

CS64180 C-SPY
Debugger, Simulator,

Emulator, or ROM monitor

Target application

User-supplied
item

INTRODUCTION

The text editor may be any standard ASCII editor, such as WordStar,
BRIEF, PMATE, or EMACS. The C compiler accepts C source files and
produces code module files, normally in the IAR proprietary Universal
Binary Relocatable Object Format (UBROF).

These code modules pass to the linker, XLINK, where they maybe
combined with modules created with the assembler, and library modules
either supplied as standard or created previously by the user using the
library manager, XLIB. XLINK and XLIB are supplied and documented as
part of the IAR Assembler package.

The output of XLINK is either debuggable code for use in the C-SPY
Debugger or an alternative one, or final executable code for use in the
target application. This executable code is in any one of many standard
formats for use in emulators, EPROM or ROM.

GETTING STARTED

INSTALLATION
This chapter shows you how to install all files from the installation disks
supplied, describes the installed files themselves, and lists the file
extensions used by the system.

INSTALLATION UNDER MS-DOS
• Ensure your system has MS-DOS 4.01 or higher.

• Insert the installation disk into the floppy disk drive and type:

a : \ i n s t a11 0

The startup screen is displayed:

file://a:/insta11

GETTING STARTED

• Press Q- You will then be prompted to enter the path for installing
the IAR subdirectories and files:

By default the files are installed in c: \ i a r.

• Edit the path, or press Q to use the default.

The installation program then decompresses the contents of the
installation disks, prompting you for each additional disk.

GETTING STARTED

When decompression is complete, you will see a display of the default
paths for each subdirectory into which the files will be installed, similar to
this:

Esc or C to abort

1-7

GETTING STARTED

You may edit any of the paths to suit your requirements. You will not
normally need to do this, and this guide assumes you have chosen the
defaults.

• Press Q to proceed.

If you already have some IAR files on the same paths, for example because
you are upgrading an existing installation, you will be asked for
confinnation before installation proceeds.

The final stage of installation is to manually modify your autoexec.bat
file. Since the modifications are version-dependent, they are documented
in the text file autoexec, i a r on the directory path you chose (by default,
c : \ i a r \ a u t o e x e c . i a r) . Open your autoexec .ba t file and the
autoexec . i a r file in a text editor, follow the instructions in
autoexec . i a r file, and save the modified autoexec .bat file.

INSTALLATION UNDER WINDOWS
The IAR C Compiler maybe used in an MS-DOS window under Windows.
Using an MS-DOS window, follow the instructions given in Installation
under MS-DOS, page 1-5.

INSTALLATION UNDER UNLX
Follow the separate printed installation documentation supplied with the
delivery media.

READ-ME FILES
Your installation includes a number of ASCII-format text files containing
recent additional information. Using the default pathnames, they are:

File Description

C: \i a r \ e tc \newcl i b. doc Documentation of additional C
library functions.

C: \i a r \ i ccz80\ i ccz80. doc General information about the C
compiler.

C: \i a r \ i ccz80\i ccz80 . h i s Product history: bug fixes and
added features.

file://c:/iar/autoexec.iar

GETTING STARTED

There are further files associated with the assembler, linker, library
manager, and any tools that have been installed separately, such as C-SPY.
These are listed in their own guides.

Before proceeding it is recommended that you read all of these files.

INSTALLED FILES
The IAR C Compiler and associated tools use subdirectories and file
extensions to make management and operation of them as efficient as
possible. This chapter describes these uses and all the IAR files. It refers to
the following MS-DOS program files:

Function Filename Where it is documented

Z80/64180 C Compiler iccz80 This guide

Z80/64180 Assembler a z 8 0 LAR Assembler, Linker, & Librarian
for the Z80/64180 Series

IAR Linker xl i n k IAR Assembler, Linker, & Librarian
for the Z80/64180 Series

IAR Librarian xl i b IAR Assembler, Linker, & Librarian
for the Z80/64180 Series

C-SPY Z80/64180 cs 64180 IAR Using C-SPY Guide
Debugger

Note that C-SPY is supplied separately. For further details please refer to
the documentation that comes with C-SPY.

The installation procedure, described above, creates several directories and
installs in them a number of files. The following sections give a detailed
description of these files.

The default installation procedure creates the following directories in
c : \ i a r :

file://c:/iar

GETTING STARTED

EXECUTABLE FILES
The c : \ i a r \ e x e subdirectory holds the MS-DOS executable program files.
These correspond to the IAR commands such as the command to run the
compiler.

The installation procedure includes an addition to the autoexec. bat PATH
statement, directing MS-DOS to search the exe subdirectory for command
files. This allows the user to issue an IAR command from any directory.

The c: \ i a r \ exe subdirectory contains the following MS-DOS executable
program files:

Name Function

az80.exe

xlib.exe

xlink.exe

pminfo.exe

bnksetup.exe

rminfo.exe

iccz80.exe

Z80/64180 Assembler; see the IAR
Z80/64180 Assembler guide.

IAR Library Manager; see the IAR
Z80/64180 Assembler guide.

IAR Linker; see the IAR Z80/64180
Assembler guide.

IAR Protected Mode Analyzer; see the IAR
Z80/64180 Assembler guide.

64180/Z818Xbank setup utility; see
Changing the banked memory specification,
page 1-65.

DOS/16M real mode information program;
see Checking extended memory, page 1-20.

Z80/64180 C Compiler; see Z80 command
line options, page 1-137.

If you have installed the C-SPY Debugger, this subdirectory will also
contain cs64180 .exe, the C-SPY Z80/64180 Debugger; see the Using
C-SPY guide.

1-10

file://c:/iar/exe

GETTING STARTED

MISCELLANEOUS FILES
The c : \ i a r \ e t c subdirectory holds miscellaneous files such as read-me
files and example sources.

It contains the following files:

Name Function

emu! a t o r . doc Documentation on supported emulators.

x l ink .doc Additional information on the linker, XLINK.

n ewe 1 i b. d o c Information on additional C library functions.

i n tw r i. c Source of the minimal p r i n t f implementation, as
an example. See C library functions reference in
the JAR C Compiler - General Features guide.

spr i n t f . c Source of the standard s p r i n t f, as an example of
va_a rg use. See C library functions reference in
the IAR C Compiler - General Features guide.

p r i n t f .c Source of the standard pr int f , as an example of
va_a rg use. See C library functions reference in
the IAR C Compiler - General Features guide.

frmrd.c Source for formatted read.

f rmw r i . c Source for formatted write.

a z 8 0. s 01 Assembler main source file, invoking a s z 8 0 i n s
and asz80opr below.

az80ins .s01 Assembler include source file testing assembly
of all standard Z80 instructions.

az80opr. sOl Assembler i ncl ude source file testing assembly
of all assembler operators.

az80ext .s01 Assembler include source file testing assembly
of all extended Z80 instructions.

s ieve .c Source of the s ieve example program.

file://c:/iar/etc

GETTING STARTED

SOURCE FILES
The c : \ i a r \ i ccz80 subdirectory holds source files for configuration to
the target environment and program requirements, as described in
Configuration, page 1-59.

This subdirectory contains the following configuration starting-point files:

Name Function

iccz80.doc

lnkz80.xcl

lnkz80b.xcl

lnk64.xcl

lnk64b.xcl

putchar.c

getchar.c

cstartup.sOl

108.sOl

bnksetup.c

Additional information about the C
compiler.

Linker command file for Z80 large
memory model.

Linker command file for Z80 banked
memory model.

Linker command file for 64180 and
Z8018X large memory model.

Linker command file for 64180 and
Z8018X banked memory model.

Source of putchar.

Source o fge tchar .

The source for CSTARTUP.

The source for the bank switching
system.

The bank setup programs.

C INCLUDE FILES
The c : \ i a r \ i n c subdirectory holds C include files, such as the header
files for the standard C library.

The C compiler searches for include files in the directories given in the
C_INCLUDE environment variable; see Files, page 1-17, and the installation
procedure includes the i nc subdirectory in the definition of this variable

1-12

file://c:/iar/i
file://c:/iar/inc

GETTING STARTED

in the autoexec file; see Installation under MS-DOS, page 1-5. This allows
the user to refer to an i nc header file simply by its basename.

This subdirectory contains the following C include files:

Name Function

assert.h
ctype.h
errno.h
f l oa t . h
l im i t s . h
math.h
setjmp.h
stdarg.h
stddef.h
stdio.h
s td l i b .h
s t r ing.h

i c c l bu t l . h

i c cex t . h

intrz80.h

intz80.h

Header files for standard C library
functions; see C library functions reference
in the IAR C Compiler - General Features
guide.

The source header for use by pri n t f . c;
see Miscellaneous files, page 1-11.

The source header for internal library
definitions, not for use by user.

The source file for both Z80 and 64180
intrinsic functions.

Header file with defines for Z80
interrupts.

C compiler header files for I/O.

Name Function

io80180.h

io80181.h

io80182.h

io64180.h

I/O addresses for the Z80180 processor.

I/O addresses for the Z80181 processor.

I/O addresses for the Z80182 processor.

I/O addresses for the 64180 processor.

GETTING STARTED

Assembler header files for I/O.

Name Function

i 08OI8O. i nc I/O addresses for the Z80180 processor.

i 08OI8I. i nc I/O addresses for the Z80181 processor.

i o80182. i nc I/O addresses for the Z80182 processor.

io64180.inc I/O addresses for the 64180 processor.

LIBRARY FILES
The c : \ i a r \ 1 i b subdirectory holds library modules.

The linker searches for library files in the directories given in the
XLINK_DFLTDIR environment variable (see XLINK environment variables
in the JAR Linker &. Librarian guide), and the installation procedure
includes the 1 i b subdirectory in the definition of this variable in the
autoexec file; see Installation under MS-DOS, page 1-5. This allows the
user to refer to a LIB library module simply by its basename.

This subdirectory contains all the library modules, as follows:

Name Function

c 1 z 8 0. r 01 Library file for Z80 large memory model.

c lz80b . r01 Library file for Z80 banked memory
model.

cl 64. rOl Library file for Z8018X and 64180 large
memory model.

cl 64b. rOl Library file for Z8018X and 64180
banked memory model.

ASSEMBLER FILES
The c: \ i a r \az80 subdirectory holds assembler-specific files; see the JAR
Z80/64180 Series Assembler guide.

1-14

file://c:/iar/1ib
file:///az80

GETTING STARTED

C-SPY FILES
If you have installed the C-SPY Debugger (supplied separately), there will
also be a c: \ i a r \cs64180 subdirectory holding the C-SPY-specific files;
see the Using C-SPY guide.

FILE TYPES
The IAR C Compiler uses the following default file extensions to identify
different types of file:

Extension Type of file Output from Input to

.doc ASCII documentation - Text editor

. h i s ASCII documentation - Text editor

.exe MS-DOS program - MS-DOS command

.c C program source Text editor ICCZ80 Compiler

.h C header source Text editor C#i include

.sOl Asm program source Text editor AZ80 Assembler

. inc Asm include source Text editor Asm#inc lude

.xcl Linker command files Text editor XLINK

.rOl Object module ICCZ80, AZ80 XLINK, XLIB

.aOl Target program XLINK EPROM, C-SPY,
etc.

.dOl Target program
with debug
information

XLINK C-SPY, etc.

The default extension may be overridden by simply including an explicit
extension when the filename is specified.

Note that by default linker listings (maps) will have the . 1 s t extension.
This may overwrite the listing file generated by the compiler. It is
recommended that you explicitly name XLINK map files, such as
example.map.

1-15

file:///cs64180

GETTING STARTED

1-16

USING THE C COMPILER

RUNNING THE C COMPILER
The ICC C Compiler is run by a command of the following form:

iccz80 [options] [sourcefi 1 el [options']

These items must be separated by one or more space or tab characters.

PARAMETERS
options A list of options separated by one or more space or tab

characters.

sourcefi 1 e The name of the source file.

If no options or sourcefi 7eis given, the command displays information
about the compiler, including a summary of the options and the target-
specific file extensions used.

OPERATION UNDER UNLX
Filenames are case sensitive so, for example, prog ram. c is not equivalent
to PROGRAM. C. Note that the default extension for C source files is lower
case .c.

FILES
The compilation process involves the following types of file:

SOURCE FILE
Each invocation of the compiler processes the single source file named on
the command line.

USING THE C COMPILER

Its name is of the form:

path leafname.ext

For example, the filename \p ro jec t \p rogram.c has the path \ p r o j e c t \ ,
the leafname program and the extension .c. If you give no extension in the
name, the compiler assumes . c.

INCLUDE FILE
Additional source files may be invoked from the main source file through
the #i ncl ude directive. The name of the include file maybe given in one
of two ways:

Standard search sequence
To use the standard search sequence enclose the filename in angled
brackets:

<f7'7e>

For example:

#include <incfile.h>

The standard search sequence is as follows:

• The include filename with successive prefixes set with the -1 option if
any.

• The include filename with successive prefixes set in the environment
variable named C_INCLUDE if present. Multiple prefixes maybe
specified by separating them with semicolon; for example:

set C_INCLUDE=\usr\proj\;\headers\

• The include filename by itself.

Note that the compiler simply adds each prefix from -I or C_ INCLUDE to
the front of the #i ncl ude filename without interpretation. Hence it is
necessary to include any final backslash in the prefix.

1-28

file:///project/program.c

USING THE C COMPILER

Source file path
To search for the file prefixed by the source file path first, enclose the
filename in double quotes:

"file"

For example:

inc lude "incfiTe.h"

For example, with a source file named \ p r o j e c t \ p r o g . c, the compiler
would first look for the file \ p r o j e c t \ i ncf i 1 e. h. If this file is not found,
the compiler continues with the standard search sequence as if angle
brackets had been used.

ASSEMBLY SOURCE FILE
The compiler is capable of generating an assembly source file for assembly
using the appropriate IAR Assembler. The name is the source file
leafname plus the extension . sOl for assembly sources.

Assembly source file generation is controlled by the - a and -A options.

OBJECT FILE
The compiler sends the generated code to the object file whose name is, by
default, the source file leafname plus the extension . rOl for object
modules.

If any errors occurs during compilation, the object file is deleted. Warnings
do not cause the object file to be deleted.

LIST FILE
The compiler can generate a compilation listing, normally to a file with the
same leafname as the source, but with the extension .1s t .

EXTENDED COMMAND LINE FILE
In addition to accepting options and source filenames from the command
line, the compiler can accept them from an extended command line file, or
from the QCCZ80 environment variable.

1-19

file:///project/prog

USING THE C COMPILER

Extended command line files have the extension . xcl by default, and can
be specified using the - f command line option. For example, to read the
command line options from extend. xcl and extend2. xcl enter:

iccz80 -f extend -f extend2

The QCCZ80 environment variable can be set up using the MS-DOS set
command. For example typing:

set QCCZ80 —z

at the MS-DOS prompt or including this in the autoexec. bat file will
cause the compiler to optimize for size in all compilations.

CHECKING EXTENDED MEMORY
The Z80 C Compiler can take advantage of DOS/16M-compatible extended
memory, and a utility pmi nf o is provided to test your PC's extended
memory for compatibility with DOS/16M. The utility also provides
information about the memory available in your system. To run the utility,
type:

pminfo Q

If pmi nf o does not return the amount of extended memory, or if it crashes,
then your memory implementation is not compatible with DOS/16M.

Use the table below for values for the D0S16M environment variable and
experiment until pmi nf o works correctly. If you cannot get pmi nf o to
work after making changes to D0S16M, you probably have a PC that is
incompatible with the IAR Systems extended memory system.

The utility rmi nf o will give you additional information about your
machine and its configuration.

1-20

USING THE C COMPILER

Machine Setting Description

386/486 with DPMI 0 Automatically set if DPMI is active

NEC 98 1 *

PS/2 2 Automatically set

80386 3 Automatically set

80386 INBOARD For Intel Inboard **

Fujitsu FMR-60,-70 5 *

AT&T 6300 6 **

82C30 processor 8 (Tandy for example)

80286 9 Automatically set

80286 10 Fast switching alternative **

386/486 with VCPI 11 Automatically set if VCPI is active

Zenith Z-24K 13 Older BIOS version

Hitachi B16, B32 14 *

OKI if800 15 *

IBM PS/55 16 A

286 19 Earlier version of setting 9

* You must set D0S16M for these machines.

** You must set D0S16M for these machines and specify the memory range.

For example, to set DOS/16M to work with an Intel 386 Inboard, type:

se t D0S16M=INB0ARD

For settings which require a memory range to be specified, place it after
the setting:

s e t D0S16M=setting @startt-end] [:size~\

Use decimal or hexadecimal (Ox prefix) with a trailing K or M to indicate
the addresses and size (if K or M is omitted, K is assumed).

1-21

USING THE C COMPILER

For example:

s e t D0S16M=6 @s2M-4M

se t D0S16M=6 @s4M:512

s e t D0S16M=6 :0x100 @2M

1-22

TUTORIAL
This chapter provides a tutorial for users new to the IAR C Compiler
package. It demonstrates:

• A typical development cycle.

• How to organize the files for a project.

• How to compile and link a simple program.

• How to run a program using C-SPY.

• How to use the following Z80/64180 series-specific features: #pragma
directives, provided header files, and banked memory.

It assumes you are familiar with the C language in general.

You must have already installed the IAR C Compiler and C-SPY for
MS-DOS as discussed in the previous chapter.

If you are not using C-SPY, you may still follow this tutorial by examining
the list files, or by using an alternative debugger. The .1 s t and . map files
show which areas of memory to monitor.

Summary of tutorial files
The following tables summarize the tutorial files used in this chapter:

File What it demonstrates

tu tor l Simple C program.

tutor2 Using serial I/O.

tutor3 Interrupt handling.

tutor4a Using banked memory.

tutor4b Using banked memory.

tutor4c Using banked memory.

TUTORIAL

TYPICAL DEVELOPMENT CYCLE
Development will normally follow the cycle illustrated below:

f Start ")

Set up a project
directory

Set up the linker
command file

Create C source
program

Compile with chosen
memory model

Link with linker
command file

Transfer to debugger,
simulator, or emulator

Errors? Edit C source
program

The following tutorial follows this cycle.

1-24

TUTORIAL

CREATING A PROJECT DIRECTORY
The user files for a particular project are hest kept in one directory,
separate from other projects and the IAR system files.

Create a project directory by entering the command:

mkdir c : \ t u t o r i a 1 (P)

Select the project directory by entering the command:

cd c : \ tu to r ia1 0

During this tutorial, you will remain in this directory, so that the files you
create will reside here.

CONFIGURING TO SUIT THE TARGET PROGRAM
Each project needs a linker command file containing details of the target
system's memory map. To create this, first copy the linker command file
template supplied:

copy c : \ i a r \ i c c z 8 0 \ 1 n k 6 4 . x c l I n k . x c l

This creates a copy called Ink.xcl in your project directory. The 64180
processor is used for these tutorials, but the steps for using the z80 are
similar.

Before you edit the linker command file, you need the following items of
information about the target system and program requirements:

• The locations of ROM and RAM.

For the first tutorial program, use the following locations, which are
appropriate to a typical target system with 48K or ROM and 2K of
RAM:

Memory Description Address

ROM Code and constants 0x0000

RAM Data variables OxEOOO

file://c:/tutoria1
file://c:/tutoria1
file://c:/iar/iccz80/1nk64.xcl

TUTORIAL

Because we are using C-SPY instead of a real target, you could actually
specify any reasonable ROM and RAM addresses and C-SPY will
automatically simulate them.

• The amount of RAM required for the stack.

The tutorial program has few dynamic variables and no deep nesting of
function calls, so a 256 (0x100) byte stack is ample.

Now edit your file c : \ t u t o r i a l \ l n k . x c l using a text editor, following
the instructions given in the file to enter these items of information.

A section of the 1 n k. xc 1 file is shown below:

-! First allocate read only segments.

0 is supposed to be start of PROM

0-FF is left free for RST routines -!

-Z(C0DE)RC0DE,CODE,CDATAO.ZVECT,CONST.CSTR.CCSTR-100-BEFF

-! The interrupts vectors are supposed to start at BF00

and take 256 (FFH) bytes -!

-Z(C0DE)INTVEC-BF00-BFFF

-! Then the writable segments which must be mapped to a RAM area

C000 was here supposed to be start of RAM.

Note: Stack size is set to 512 (200H) bytes with 'CSTACK+200 -!

-Z(DATA)DATAO.IDATAO.UDATAO.ECSTR.WCSTR.TEMP.CSTACK+200-E000-FFFF

The ROM area is divided into three parts: the restart vectors from 0x0000
to OxOOFF, the code and constants from 0x0100 to OxBEFF, and the
interrupt vector table from OxBFOO to OxBFFF. The linker will later divide
the area from 0x0100 to OxBEFF into subparts for each of the memory for
the code, numerical constants, initial values, and constant strings.

Note that these decisions are not permanent: they can be altered later on
in the project if the original choice proves to be incorrect, or less than
optimal.

1-26

file://c:/tutorial/lnk.xcl

TUTORIAL

For detailed information on configuring to suit the target memory, see
Memory location, page 1-63. For detailed information on choosing stack
size, see Stack size, page 1-69.

SELECTING A LIBRARY FILE
Library selection involves a single choice:

Memory model large or banked.

See Memory model, page 1-61, for more details.

Our tutorial program contains only a small amount of code, and so
requires only the large memory model as opposed to the banked memory
model. The appropriate library file for this is cl 64180. rOl.

See Library files, page 1-14, for details of the other library filenames.

CREATING A PROGRAM
The first program is a simple program using just standard C facilities. It
repeatedly calls a function that increments a variable. The loop program
demonstrates how to compile, link, and run a program.

Using a text editor, enter the source of the loop program. Alternatively, a
copy is supplied in the file t u to r l . c in the C : \ i a r \ i ccz80 directory:

#include <stdio.h>

int call_count;
unsigned char my_char;
const char con_char='a';

void do_foreground_process(void)
{
int fp_var=l;

call_count++;
putchar(my_char);

}

file://C:/iar/iccz80

TUTORIAL

void set_1ocal(void)
{

i n t inc_var=l ;
char inc_char;
inc_char='b ' ;

}

void main(void)

{
int my_int=0;
call_count=0;
my_char=con_char;
set_local();
while (my_int<100)
{
do_foreground_process();
my_int++;

}
}

Save the source as the file t u t o r 1. c.

COMPILING THE PROGRAM
To compile the program, enter the command:

iccz80 -ml -r -L -q -vl t u t o r l Q

There are several compile options used here:

Option Description

- ml Selects the large memory model.

- r Allows the code to be debugged using C-SPY.

- L Creates a list file.

- q Includes assembler code with C in the list.

- v 1 Produces code for the 64180.

TUTORIAL

This creates an object module called t u t o r l . rOl and a list file called
t u t o r l . 1 s t .

Examine the list file produced and see how the variables are assigned to
different segments.

\ 0000 do_foreground_process:

1 #include <stdio.h>

2

3 in t can_count;

4 unsigned char my_char;

5 const char con_char-'a':

6

7 void do_foreground_process(void)

8 {

\ 0000 CD0000 CALL ?ENT_AUT0_DIRECT_L09

\ 0003 FEFF DEFW -2

9 int fp_var-l;

\ 0005 DD36FE01 LD (IX-2).l

\ 0009 DD36FF00 LD (IX-l).O

10 call_count++;

\ 0OOD 2AO00O LD HL.(call_count)

\ 0010 23 INC HL

\ 0011 220000 LD (call_count).HL

11 putchar(my_char);

\ 0014 ED5B0200 LD DE.(my_char)

\ 0018 1600 LD D.O

\ 001A CD0000 CALL putchar

12 }

\ 001D C30000 JP ?LEAVE_DIRECT_L09

\ 0020 set_local:

13

14 void set_local(void)

15 {

\ 0020 CD0000 CALL ?ENT_AUT0_DIRECT_L09

\ 0023 FCFF DEFW -4

16 int inc_var-l;

\ 0025 DD36FC01 LD (IX-4J.1

\ 0029 DD36FD00 LD (IX-3) .0

1-29

TUTORIAL

17 char inc_char;

18 inc_char- 'b ' ;

\ 002D DD36FE62 LD (IX-2) ,98

19 }

\ 0031 C30000 JP ?LEAVE_DIRECT_L09

\ 0034 main:

20

21 void main(void)

22 {

\ 0034 CD0000 CALL ?ENT_AUT0_DIRECT_L09

\ 0037 FEFF DEFW -2

23 int my_int-0:

\ 0039 AF XOR A

\ 003A DD77FE LO (IX-2).A

\ 0030 DD77FF LD (IX-l).A

24 call_count-0;

\ 0040 210000 LD HL.O

\ 0043 220000 LD (call_count),HL

25 my_char-con_char;

\ 0046 3A00O0 LD A,(con_char)

\ 0049 320200 LD (my_char).A

26 set_local():

\ 004C CD2000 CALL set_local

\ 004F ?0001:

27 while (my_int<100)

\ 004F 016480

\ 0052 DD6EFE

\ 0055 DD66FF

\ 0058 3E80

\ 005A AC

\ 005B 67

\ 005C ED42

\ 005E 300D

\ 0060 ?0002:

28 {

29 do_foreground_process();

\ 0060 CD0000 CALL do_foreground_process

30 my_int++:

1-30

LD BC.32868

LD L.UX-2)

LD H.(IX-l)

LD A,-128

XOR H
LD H.A
SBC HL.BC

JR NC,70000

TUTORIAL

\ 0063 DD34FE INC (IX-2)

\ 0066 2003 JR NZ. 70003

\ 0068 DD34FF INC (IX-1)

\ 006B

31

32

}

}

70003:

\ 006B 18E2 JR 70001

\ 006D 70000:

\ 006D C30000 JP ?LEAVE_DIRECT_L09

\ 0000 RSEG CONST

\ 0000 con_char:

\ 0000 61 DEFB 'a'

\ 0000 RSEG UDATAO

\ 0000 call_count:

\ 0002 DEFS 2

\ 0002 my_char:

\ 0003 DEFS 1

\ 0003 END

LINKING THE PROGRAM
To link the program, enter the command:

xlink tu tor l -f Ink - r t -x -1 tutorl.map 0

The - f option specifies your XLINK command file 1 nk, and the - rt option
allows the code to be debugged using C-SPY (the t indicates that C-SPY's
terminal I/O routine will be used to display output).

The -x creates a map file and the -1 fi lename gives the name of the file.

The result of linking is a code file called a ou t . dOl and a map file called
tu to r l .map .

1-31

TUTORIAL

Examine the map file to see how the segment definitions and code were
placed into their physical addresses. The most important information
about segments is at the end where the address and range are given:

**

* *

* SEGMENTS IN DUMP ORDER *

* *

**

SEGMENT START ADDRES: END ADDRESS TYPE

rel

ORG

stc

P/N

pos

AL

0100 017C

TYPE

rel

ORG

stc

P/N

pos 0

017D - 01F1 rel fit pos 0

Not in use rel fit pos 0
Not in use rel fit pos 0

01F2 - 01F2 rel fit pos 0

Not in use rel fit pos 0

Not in use rel fit pos 0

Not in use com stc pos 0

Not in use rel stc pos 0

Not in use rel fit pos 0

COOO - C002 rel fit pos 0
Not in use rel fit pos 0

Not in use rel fit pos 0

Not in use rel fit pos 0
C003 - C202 rel fit pos 0

0000 - 0002 aseg

RC0DE

CODE

CDATA0

ZVECT

CONST

CSTR

CCSTR

INTVEC

DATA0

IDATA0

UDATA0

ECSTR

WCSTR

TEMP

CSTACK

Notice that, although the link file specified the address for all segments,
many of the segments were not used.

Several entry points were described that do not appear in the original C
code. The entry for ?c_exi t is from the CSTARTUP module. The putchar
entry is from the library file (since we have used the - rt flag, the C-SPY
debug putchar code is used).

1-32

TUTORIAL

RUNNING THE PROGRAM
To run the program using C-SPY, enter the command:

cs64180s aout 0

At the C-SPY prompt, enter the command:

STEP 0
Repeat this until the line reading do_f oreground_process () ; is
highlighted.

Now, to inspect the value of the variable cal 1_count, enter:

EXPR call_count 0

C-SPY should display 0, since the variable has been initialized but not yet
incremented.

Now, enter the commands

MEMORY E000 0
STEP 0

You should see a C-SPY display similar to this:

tutorl 8Z4
int inc_war=l;
char inc_char;
inc char='b';

void nain(uoid)
{

int mq_int=0;
|call_couirt=0:|
my_char=con_char:
set_local();
uhile (my_int<100)
{
do_foreground_process():

* Memory
DFDO 76
DFD8
DFE0
DFE8
DFFO
DFF8
E890
£688
E010
E018
EOZO
E028
E030
E038

76
76
76
76
76
00
76
76
76
76
76
76
76

76 76
76 76
76 76
76 76
76 76
76 76
00 00
76 76
76 76
76 76
76 76
76 76
76 76
76 76

76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76
76 76

76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76
76 76 76

n= Terminal I/O CS64180S UZ.Z3IV30G/DXT =n

- C-SF¥
eualuated to 0

> MEtlORV EOOO
> step

(c) IAR Systems

TUTORIAL

This displays the current contents of memory from address EOOO (where
the variables are located). The next step executes the current line and
moves to the next line in the loop. Now examine the variable again by
entering:

EXPR ca11_count 0

C-SPY should display 1, showing that the variable has been incremented
by do_f oregrouncLprocess () ; . The memory contents at address 0001
will be incremented in the memory window.

Enter:

LEVEL 0
STEP 0

The assembler code for the C program is displayed and the steps are by
assembler lines, rather than by C statements.

Note that the address of the code is based on the link file specification.

Enter:

LEVEL 0
STEP 11 0

This returns to C level and steps through 11 instructions.

You can modify variables or memory contents while you are debugging.
Enter:

EXPR my_char=,c' 0
STEP 11 0

Since my_char is not modified within the loop, the subroutine uses the
new value.

QUITTING C-SPY
To quit C-SPY, enter the command:

QUIT 0

1-34

TUTORIAL

MODIFYING THE COMPILE AND LINK OPTIONS
Different compile or link options will produce similar output, but with
different memory locations. Some options will be covered with the other
tutorials, but you may be interested in trying the following examples:

• Use the - v 0 processor option instead of the - v 1 option for compiling.
Use the link file 1 nkz80.xcl instead of 1 nk.xcl . Notice that the
variable addresses have changed.

USING THE C EXIT ROUTINE
If you are testing the program in C-SPY, continually step through the
program until the counter my_i nt eventually reaches 100 and the C
program exits. Use the C-SPY command:

STEP 30 0

to repeatedly step through the program 30 lines at a time.

There is a entry point for exi t in the linked code. You can create your
own exit processing, but normally you will wish to write the C code such
that it remains in an infinite loop.

EXTENDING THE PROGRAM
We shall now extend the program to access the serial I/O channel built in
to the 64180 microprocessor. The resultant program accepts input from
serial port number 0 and outputs the character to a port. This serial
program demonstrates the use of the #pragma directive and inclusion of
supplied header files.

The following is a complete listing of the program. Enter it into a suitable
text editor and save it as t u t o r 2 . c. Alternatively, a copy is provided in the
c : \ i a r \ i c c z 8 0 directory:

/* enable use of extended keywords */
#pragma language=extended
/* include definitions for 10 registers */

#indude <io64180.h>

file://c:/iar/iccz80

TUTORIAL

/ * include def in i t ions for i n t r i ns i cs * /
#include <intrz80.h>
/* combines input function and mask */

#define receive_full (STATO & 128)
/* output port decoded by external logic */

#define my_port OxCO

* *

* Start of code *
* *

char my_char;
int call_count;

char read_char(void)
{

/* Loop until bit 7 indicates receive data */
while (!receive_full);
my_char= RDRO;
/* return receive register */
return(my_char);

}

void do_foreground_process(void)
{
call_count++;

output8(my_port,my_char);
}

void main(void)
{

/* Initialize comms channel */
/* 2400 with 6.144 MHz clock */
CNTLBO - 0x2A;
/* enable and data format */
CNTLAO = 0x65;

/* now loop forever, taking input when ready */

1-36

TUTORIAL

while (1)
{

i f (read_char()) do_foreground_process();
}

}

The first line in the program is:

#pragma language=extended /* enable use of extended
keywords */

By default, extended keywords are not available, so you must include this
directive before attempting to use any. The #pragma directive is described
in the section #pragma directive summary, page 1-82.

The second line of code is:

#include <io64180.h> /* include def in i t ions for
10 registers */

The file i O64180. h includes definitions for all I/O registers for the 64180
microprocessor.

The full list of C source header files for processor I/O is given in C include
files, page 1-12.

The line below set up and test the serial input:

#define receive_ful l (STATO & 128)
/* output port decoded by external logic */

while (! rece ive_ fu l l) ;
my_char= RDRO;

Bit 7 of STATO, one of the I/O registers defined in the included header file,
indicated a character has been received.

/* I n i t i a l i z e comms channel */
/* 2400 with 6.144 MHz clock */
CNTLBO = 0x2A;
/* enable and data format */
CNTLAO = 0x65;

The bits set in CNTLBO set the baud rate to be 2400.

1-37

TUTORIAL

COMPILING AND LINKING THE SERIAL PROGRAM
Compile and link the program with a large memory model and a standard
link file as follows:

iccz80 tutor2 -ml -r -L -q - v l 0
x l ink tutor2 -f Ink - r t 0

RUNNING THE SERIAL PROGRAM
As before, to run the program, enter:

cs64180 aout 0

In C-SPY enter the command:
STEP 0
LEVEL 0

and step until C-SPY fails to give a prompt. The program is now waiting in
awhi l e loop for an external input.

Stop execution and simulate an input by entering:

@C
sf r 4=80 0
s f r 8=63 0
window register ON 0
STEP 0

On a real target with the serial input port number connected to a
transmitter, a received character would set the 'byte received' flag in bit 7
of the serial control register and be transferred to the data register. The
steps above force the ready bit to 1.

Now enter:

STEP 0
ISTEP 0

several times and watch the program sequence through its code and place
the character it reads from the serial register to the output port.

TUTORIAL

Use care when designing your test programs to avoid tight loops since they
can be very difficult to test. Place dummy function calls or assignments
inside the loops to simplify debugging.

EXITING FROM C-SPY
Quit C-SPY by entering:

QUIT 0

ADDING AN INTERRUPT
HANDLER
We shall now modify the first tutorial program by adding an interrupt
handler. The IAR C Compiler lets you write interrupt handlers directly in
C using the i n t e r r u p t keyword. The interrupt we will handle is the serial
interrupt.

The following is a complete listing of the interrupt program. The program
is provided in the sample tutorials as t u t o r 3 . c.

/* enable use of extended keywords */
#pragma language=extended

/* include def in i t ions for 10 registers */
^include <io64180.h>

/ * include def in i t ions for i n t r i ns i cs * /
#include <intrz80.h>

/* combines input function and mask */
#define receive_ful l (STATO & 128)

/* output port decoded by external logic */
#define my_port OxCO
/ * * • *

* *

* Start of code *
* *

char my_char;

1-39 -

TUTORIAL

i n t cal l_count;

in te r rup t [0x2e] void receive_char(void)
{

/ * in te r rup t indicates received data * /
my_char= RDRO;
/* output receive register */
output8(my_port,my_char);

void do_foreground_process(void)
{
call_count++;

void main(void)
{
/* Initialize comms channel */
/* 2400 with 6.144 MHz clock */
CNTLBO = 0x2A;
/* enable and data format */
CNTLAO = 0x65 ;
/* enable interrupts on received char */
STAT0|-1;
/* enable interrupts through C function */
/* INTVEC was BF in link file */
/* Set up IL register to point at table */
output8(IL. 0x20);
load_I_register(0x3f);
enable_interrupt();
/* now loop forever, taking input automatically */
while (1)
{
do_foreground_process();

}
}

1-40

TUTORIAL

The interrupt include files must be present to define the registers used:

The following lines initialize the interrupt registers and enable interrupts:

/* enable in terrupts on received char */
STATO|=1;
/* enable in terrupts through C function */
enable_interrupt() ;

The interrupt function itself is defined by the following lines:

in ter rupt [0x2e] void receive_char(void)
{

/* in ter rupt indicates received data */
my_char= RDRO;
/* output receive register */

output8(my_port,my_char);

}

This function is called whenever there is a received character. The
response of this program is to output a character, making it easy to identify
the event. If you were working with a real target that had a diagnostic
output channel, you would probably output some diagnostic information
and then abort.

The i n t e r r u p t keyword is described in Extended keyword reference,
page 1-85.

COMPILING AND LINKING THE PROGRAM
Compile and link the program as before:

iccz80 tutor3 -r -L -q - v l 0
x l ink tutor3 -f Ink -r 0

1-41

TUTORIAL

RUNNING THE INTERRUPT PROGRAM
As before, to run the program, enter:

cs64180s aout 0

followed by:
STEP 0
LEVEL 0

C-SPY does not simulate interrupts, but you can use the LEVEL command
to examine the code produced, Alternatively, examine the list file output
on a printed copy.

EXITING FROM C-SPY
Quit C-SPY by entering:

QUIT 0

USING BANKED MEMORY
If the target system has ROM bank switching, the C program can make use
of this for code storage. The example below shows how the non_banked
keyword can be used to select functions that should remain in the main
bank.

/* enable use of extended keywords */
#pragma language=extended
/* include definitions for 10 registers */

#include <io64180.h>
/* include definitions for intrinsics */

#include <intrz80.h>

* *

* Start of code *
* *

• • i t * /

extern char my_char;

TUTORIAL

extern non_banked void do_foreground_process(void);

void init_comms(void)
{

/* I n i t i a l i z e comms channel */
/* 2400 with 6.144 MHz clock */
CNTLBO = 0x2A;
/* enable and data format */
CNTLAO = 0x65 ;
/* enable interrupts on received char */
STAT0|=8;
/* enable interrupts through C function */
/* INTVEC was 3F in link file */
/* Set up IL register to point at table */
output8(IL. 32);
load_I_register(0x3f);
enable_interrupt();

void main(void)
{

init_comms();
while (1)
{

/* now loop forever, taking input automatically */
do_foreground_process();

}
}

This program is provided in the sample tutorials astutor4a.c, Compile
the program using the -mb memory model.

iccz80 tutor4a -mb -r -q -L -vl

Examine the extract from the list file below and note how the calling
methods for a banked and an unbanked function differ.

TUTORIAL

30 void main(void)

31 {
\ 0016 main:

32 init_comms();

\ 0016 3E00 LD

\ 0018 210000 LD

\ 001B CD0000 CALL

\ 001E ?0001:

A.BYTE3 init_comms

HL,init_comms

?BANK CALL_DIRECT_L08

33 while (1)

34 {

35 /* now loop forever, taking input */

36 do_foreground_process();

\ 001E CDOOOO CALL do_foreground_process

37 }

38 }

\ 0021 18FB JR 70001

The non-banked function is called directly, but ?BANK_CALL_DI RECT_L08
stores the bank number of the address pointer first, then calls a routine to
switch banks and jump to the address in AH L.

The banked memory model link files (1 n k64b or 1 n kz80b) must be used
with a program compiled as banked. The banked function address is based
on a three-byte pointer where bytes 0-1 provide the offset and byte 2 is the
bank number to supply to the mapping circuit.

The 1nk64b.xc1 file provides a sample of how to define the external
banks. The statement:

-b(CODE)CODE=4C4000,4000,40000

indicates that banks start at logical address 0x4000 with a size of 0x4000.
The third is the bank size multiplied by 0x10.

The non-banked functions used by t u t o r 4 a . c are in t u t o r 4 b . c and
t u t o r4c . c and are listed below:

/* t u t o r 4 b . c * /
/* enable use of extended keywords */

#pragma language=extended
/* include definitions for 10 registers */

1-44

#include <io64180.h>
/* include definitions for intrinsics */

#include <intrz80.h>
/* combines input function and mask */

#define receive_full (STATO & 128)
/* output port decoded by external logic */

#define my_port OxCO

* *

* Start of code *
* *

char my_char;

#pragma function=non_banked
interrupt [0x2e] void receive_char(void)

{
/* interrupt indicates received data */
my_char= RDRO;
/* output receive register */

output8(my_port,my_cha r);
}

Compile tu tor4b in the same way as the main module:

iccz80 tutor4b -mb -r -x -L -vl

/* tutor4c.c */
/* enable use of extended keywords */

#pragma language=extended
/* include definitions for 10 registers */

#include <io64180.h>
/* include definitions for intrinsics */

#include <intrz80.h>
/* combines input function and mask */

#define receive_full (STATO & 128)
/* output port decoded by external logic */

#define my_port OxCO

TUTORIAL

* *

* Start of code *
* *

char my_char;

#pragma function=non_banked
in te r rup t [0x2e] void receive_char(void)
{

/* in te r rup t indicates received data */
my_char= RDRO;
/* output receive register */
output8(my_port,my_char);

}

Compile tutor4c in the same way as the other modules:

iccz80 tutor4c -mb -r -x -L -vl

Link all three source files by entering:

x l i nk tutor4a tutor4b tutor4c -f Ink - r t -x -1 tutor4.map

Extracts of the map file for the combined program is shown below:

DEFINED ABSOLUTE ENTRIES

PROGRAM MODULE, NAME : ?ABS_ENTRY_MOD

ABSOLUTE ENTRIES ADDRESS REF BY MODULE

CBR 0008 CSTARTUP

CBAR 0084 CSTARTUP

The startup routine sets up the address banking variables.

FILE NAME : tutor4a.r01

PROGRAM MODULE. NAME : tutor4a

1-46

TUTORIAL

SEGMENTS IN THE MODULE

CODE

Banked segment, address : 004C:4000 - 004C:4023

ENTRIES ADDRESS REF BY MODULE

im't_comms 004C:4000 Not referred to

main 004C:4016 CSTARTUP

LOCALS ADDRESS

?0001 004C:401E

FILE NAME : tutor4b.r01

PROGRAM MODULE. NAME : tutor4b

SEGMENTS IN THE MODULE

RCODE

Relative segment, address : 0100 - 0107

ENTRIES ADDRESS

do_foreground_process 0100

REF BY MODULE

tutor4a

UDATAO

Relative segment, address : 8000 - 8001

ENTRIES ADDRESS

call_count 8000

REF BY MODULE

Not referred to

FILE NAME : tutor4c.r01

PROGRAM MODULE, NAME : tutor4c

SEGMENTS IN THE MODULE

RCODE

Relative segment, address : 0108 - 0119

ENTRIES ADDRESS

receive_char 0108

REF BY MODULE

Not referred to

1-47

TUTORIAL

INTVEC

Common segment, address : 3F00 - 3F0C

UDATAO

Relative segment, address : 8002 - 8002

ENTRIES ADDRESS

my_char 8002

REF BY MODULE

Not referred to

The entries show the module addresses and which modules call this
module.

**

SEGMENTS IN DUMP ORDER

**

SEGMENT

DATAO

IDATAO

UDATAO

ECSTR

WCSTR

TEMP

CSTACK

RCODE

CDATAO

ZVECT

CONST

CSTR

CCSTR

INTVEC

CODE

START ADDRESS END ADDRESS TYPE ORG P/N ALIGN

Not in use r e l s tc pos 0

Not in use r e l f i t pos 0

8000 - 8002 re l f i t pos 0

Not in use r e l f i t pos 0

Not in use re l f i t pos 0

Not in use re l f i t pos 0

8003 - 8202 re l f i t pos 0

0100 - 019E re l s tc pos 0

Not i n use re l f i t pos 0

Not i n use re l f i t pos 0

Not i n use r e l f i t pos 0

Not i n use re l f i t pos 0

Not i n use re l f i t pos 0

3F00 - 3F0C com stc pos 0

004C:4000 - 004C:4023 bnk f i t pos 0

0000 - 0002 aseg

1-48

TUTORIAL

The segments used and their addresses are listed at the end of the map.

If you use banked memory with the z80, you must provide decoding
circuitry for the ROM banks. The high order address lines (A 12 to A15)
must be decoded to select which area of memory is being accessed, and an
additional decoder (driven by an I/O port for example) must provide the
bank number.

For more information about using banked memory see Banked memory,
page 1-63, and Configuration, page 1-59.

You may want to split your program into several C or assembler modules
to simplify maintenance. See Configuration, page 1-59, for more
information on using multiple modules.

MODIFYING CSTARTUP
A standard C setup module is provided with the compiler, but you may
wish to create your own.

For example, the startup code could change the I/O register or page zero
memory addresses. It might be desirable to include initialization routines
in CSTARTUP rather than in the main code if your implementations always
use a standard environment.

When the C program is compiled, it is executed after an initialization
routine, but before an exit routine. Normally the exit routine is never
called as the code is used in a dedicated controller which loops
continuously. If you want to include special startup or shutdown code, edit
the CSTARTUP file, using the CSTARTUP. SOI assembly source module as a
starting point for modification. The code is commented to indicate what
action is taking place during the execution:

• Stack pointer initialized.

• Data memory initialized.

• C ma i n called.

• Jump to exit routine.

1-49

TUTORIAL

Add code at the appropriate point to initialize your hardware and assemble
the modified source file. After successful assembly, use XLIB to place the
new module in the library file for the processor and memory type (for
example, cl z80. sOl for the Z80).

The code below shows several important sections of the startup file.

#define proc64180 (__TID_&0x010-0x010)

NAME CSTARTUP

EXTERN main ; where to begin

execution

EXTERN ?C_EXIT ; where to go when

program is done

#ifdef banking

#if proc64180

CBAR_addr EQU 3AH

CBR_addr EQU 38H

108.sOl)

EXTERN CBAR

EXTERN CBR

#endif

EXTERN ?BANK_CAIL_DIRECT_L08

#endif

; CSTACK - The C stack segment

; Please, see in the link file lnk*.xcl how to increment

; the stack size without having to reassemble cstartup.sOl !

RSEG CSTACK

DEFS 0 ; a bare minimum !

1-50

; define I/O ports to MMU registers

: (See also defines in debug.sOl and

TUTORIAL

Forward declarations of segment used during initialization

RSEG UDATAO

RSEG IDATAO

RSEG ECSTR

RSEG TEMP

RSEG DATAO

RSEG WCSTR

RSEG CDATAO

RSEG ZVECT

RSEG CCSTR

RSEG CONST

RSEG CSTR

ASEG

ORG 0

JP init_C

; RCODE - where the execution actually begins

RSEG RCODE

init_C
LD SP,.SFE.(CSTACK-1) ; from high to low address

; If hardware must be initiated from assembly or if interrupts

; should be on when reaching main, this is the place to insert

; such code.

#ifdef banking

#if proc64180

2-51

TUTORIAL

; S e t t i n g of MMU r e g i s t e r s - see chapter " L i n k i n g " of manual.

LD A.CBAR ; set CBAR value

OUTO (CBAR_addr).A

LD A.CBR ; set CBR value

OUTO (CBR_addr).A

#endif

#endif

: If it is not a requirement that stat ic/global data is set

; to zero or to some exp l i c i t value at startup, the following

; l i ne referr ing to seg_init can be deleted, or commented.

CALL seg_init

i fdef banking

LD HL.LWRD(main) ; banked c a l l to mainO

LD A,BYTE3(main)

CALL ?BANK_CALL_DIRECT_L08

#el se

CALL main ; non-banked call to mainO

#endif

; Now when we are ready with our C program we must perform a

; system-dependent action. In this case we just stop.

; DO NOT CHANGE THE NEXT LINE OF CSTARTUP IF YOU WANT TO RUN

: YOUR SOFTWARE WITH THE HELP OF THE C-SPY HLL DEBUGGER.

TUTORIAL

JP ?C_EXIT

?C_EXIT

exit EQU ?C_EXIT

; The next line can be replaced by user defined code.

JR $; loop forever

END

The stack size can be set in CSTARTUP, but it is simpler to use the
- Z (DATA) C STAC K+s t a c k_s i z e declaration in the linker filer. (Using the
linker file avoids having to re-assemble CSTARTUP).

The initialization of an internal sfr register or an external output divide
could be done after the section starting " I f hardware must be
i ni ti a ted". For example, add the assembly code below to have the 64180
output to address I/O 101:

LD A,101
0UT0 (192),A

If you have any other code you want executed before main starts, insert
that here as well.

If you want to insert assembler shutdown code, insert that after ?C_EXIT.

ADDITIONAL EXAMPLES
The examples below demonstrate more advanced C programming
techniques. There are also examples in other sections of the manual,
particularly in Data representation, page 1-77, and Assembly language
interface, page 1-117.

1-53

TUTORIAL

USING VARIABLES
This example shows a variety of ways of declaring variables. Compile as
before and examine the list file. This example is available as exampl 1. c.

/* More uses of variables */
int staticint;
char staticchar;
const char conschar='a';
const int consint=3;
char * cstring="constant";
const char constring[]="rom";
no_init int noinitv;
unsigned char carr[0xl00];
struct
{
short a:2;
short :1; /* gap in bitfield */
short b:l;

} bf;

unsigned char * intram_0 = (unsigned char *) 0x100;
unsigned char * intram_l = (unsigned char *) 0x110;
char m_ram[]={ "Place your message here" };
const char m_rom[]={ "Fixed text" };

void main(void)
{
char localint-1;
char localchar='c';
bf.a-1; /* set two bits of bf to 01 */
* intram_0 = 0x80;
strcpy(m_ram,m_roiTi);

}

1-54

TUTORIAL

USING MEMORY-MAPPED OUTPUT
This example shows how to use a pointer for memory-mapped output.
Compile as before and examine the list file. This example is available as
examp!2.c.

#include <stdio.h>
i n t putcharCint outchar)
{

unsigned char *LCD_I0;
LCD_I0= (unsigned char *) 0x8000;
* LCD_I0=outchar;
return(outchar);

}

USING POINTERS
This example shows more ways of using pointers. Compile as before and
examine the list file. This example is available as exampl 3. c.

#pragma language=extended
char mychar;
/* global variable to hold char data from pointers */

char * gp;
char * pcd;
/* global pointers to character */

#define my_data ((char *) OxDOOO)

char text[10];

void main(void)
{
char *lp; /* local pointer to char */
pcd="abcd"; /* pointer to string in ROM */
pcd=(char *) OxDEEE;
mychar= * my_data;
gp=(char *) OxDEED;
/* constant pointers to uninitialized char */

2-55

TUTORIAL

t e x t [0] = * pcd;
p u t c h a r (* (t e x t + 1)) ;
p u t c h a r (* g p) ;
p u t c h a r (' a ') ;
pcd= gp;
mychar=* pcd;
pcd= tex t ;
mychar=* pcd;
lp=my_data;
* pcd= mychar;
* p c d = ' a ' ;
* gp= ' a ' ;

USING RECURSIVE FUNCTIONS
This example shows a recursive function. Compile as before and examine
the list file. Note that the calling method is the same as for any function
since ? ENT_PARM_D I RECT_L09 creates a new variable area on the stack for
each call. This example is available as exampl 4. c.

vo id r e c u r s i v e (i n t va lue)
{

i n t my_int;
my_int=l;
va1ue-=my_int;
if (value>10) recursive(value);

}
void main(void)
{
recursive(50);

}

TUTORIAL

USING PRAGMAS
The example below shows how to use pragmas to specify function and
memory characteristics. This example is available asexamp!5.c.

/* using pragma def in i t ions instead of modifiers */
#include <stdio.h>
#pragma language=extended
in t ccount;
#pragma memory=dataseg(mydseg)
/* you must define mydseg in the linker file */
int loopc;
#pragma memory=default

#pragma function=monitor
void looplO(void)
{
for (loopc=l;loopc<10;loopc++);

}
#pragma function=default

#pragma function=non_banked
void printcnt(int cent)
{
printfC'the count is now %d",ccnt);

}
void main(void)
{
int my_int=0;
int my_int2=0;
ccount=l;

while (my_int<100)
{
looplOO;
my_int++;
printcnt(my_int);

}
}

2.57

TUTORIAL

1-58

CONFIGURATION

INTRODUCTION
Systems based on the Z80 microprocessor family can vary considerably in
their use of internal and external ROM and RAM, and in their stack
requirements. They also differ in their need for reentrancy, large libraries,
or time-critical functions. This chapter describes how to configure the IAR
C Compiler for a given application.

The memory model and link options specify:

• The ROM areas: used for non-bankable functions, bankable functions,
constants, and initial values.

• The RAM areas: used for directly addressable internal memory,
indirectly addressable internal memory, external memory, and
external non-volatile memory.

The compiler and linker identify these different types of memory by giving
them different segment names , such as RCODE for code in ROM and I DATA
for data in internal RAM.

CONFIGURATION

Each feature of the environment or usage is handled by one or more
configurable elements of the compiler packages, as follows:

Feature Configurable element

Memory model

Memory location

Non-volatile RAM

Stack size

Optimization

putchar and getchar functions

pri n t f /scanf facilities

Heap size

Compiler option, linker option.

Linker command file.

Linker command file.

Compiler keyword, Linker
command file.

Compiler option.

Run-time library module.

Linker command file.

Heap library module.

Initialization of hardware and memory c s t a r t u p module.

The following sections describe each of the above features in turn. Note
that many of the configuration procedures involve editing IAR files, and
you may want to make copies of the originals before beginning.

RUN-TIME LIBRARY
The library file controls many of the features of the system.

There is an alternative run-time library for each combination of processor
group and memory model.

Processor
Memory model

Large Banked

Z80

HD64180orZ8018X

c lz80 . r01

Cl64180.r01

Clz80b.r01

cl64180b.r01

By default the library files are in the directory c : \ i a r \ l i b .

file://c:/iar/lib

CONFIGURATION

LINKER COMMAND FILE
To create a linker command file for a particular project the user first
copies the supplied template c : \ i a r \ i c c z 8 0 \ 1 n k . x c l . The user then
modifies this file, as described within the file, to specify the details of the
target system's memory map.

MEMORY MODEL
The IAR C Compiler supports four memory models. These offer a choice
of default placement for local and global variables within the ROM (CODE)
and RAM (DATA) memory.

SPECIFYING THE MEMORY MODEL
The user's program may use only one model at a time, that is, the same
model must be used by all user modules and all library modules.

The memory model must be specified to both the compiler and to the
linker.

To specify the memory module to the compiler when a user module is
compiled, you use one of the following command line options:

Option Model

- m 1 Large memory model

- mb Banked memory model

For example, to compile myprog in the banked memory model, use the
command:

iccz80 myprog -mb

If you include none of the memory model options, the compiler uses the
large memory model.

file://c:/iar/iccz80/1nk.xcl

CONFIGURATION

To specify the memory model to the linker, you select an appropriate
library file:

Large Banked

Z80

Z80180/64180

cU80.r01

Cl64.r01

clz80b.r01

Cl64b.r01

For example, to link the module my prog (previously compiled for the
banked memory model) for the banked memory model, you should use the
command:

x l ink myprog -f Ink cl80b

The - f option specifies a command filename which holds the assignments
for the segment areas; see the IAR Z80/64180 Assembler guide for details.

LINKER COMMAND FILE
Four standard linker command files have been supplied with the compiler.
To create a linker command file for a particular project, copy the supplied
template c : \ i a r \ i c c z 8 0 \ * . x c l and modify the file to specify the details
of the target system's memory map. Instructions for modifications are
included within the files.

The supplied linker files have the following characteristics:

File lnkz80 lnkz80b lnk64 lnkz80b

Processor library clz80 clz80b

ROM area 100-BEFF 100-3EFF

Banked area - 4000-7FFF

RAM area C000-FFFF 8000-FFFF

INTVEC BFOO 3F00

Compile op t ions -ml -vO -mb -vO

cl64180 cl 64180b

100-BEFF 100-3EFF

4000-7FFF

C000-FFFF 8000-FFFF

BFOO 3F00

-ml - v l -mb - v l

file://c:/iar/iccz80/*

CONFIGURATION

MEMORY LOCATION
You need to specify to the linker your hardware environment's address
ranges for ROM and RAM. You would normally do this in your copy of
the linker command file template.

For how to specify the memory address ranges, see the contents of the
linker command file template and the guide IAR Assembler, Linker, &.
Librarian for the Z80/64180.

BANKED MEMORY
The microprocessor can use a banked CODE area as shown below:

FFFF

Bank base address

0000

RAM

Common area 1

BankO

Banked area

Root bank

Common area 0

Bank 2,
etc

There can be up to 256 banks of memory in addition to the root bank.

1-63

CONFIGURATION

The logical addresses are mapped into a 512 Kbyte physical address space
by the base registers:

+ Common bank

FFFF

Common area 1

D000

+ Common bank

2FFFF

2D000

FFFF

Common area 1

D000

+ Base bank

2FFFF

2D000

FFFF

Common area 1

D000

+ Base bank

7FFF

Bank area

4000

+ Base bank

7FFF

Bank area

4000

+ Base bank

17FFF

14000

7FFF

Bank area

4000

No offset

17FFF

14000

7FFF

Bank area

4000

No offset

3FFF

Common area 0

0000

No offset

3FFF

Common area 0

0000

No offset
03FFF

00000

3FFF

Common area 0

0000

03FFF

00000

Logical Physical
address address

A banked memory model link file (used with linker files 1 nk64b or
1 n kz80b) must be used with a program compiled as banked. The banked
function address is based on a three-byte pointer where bytes 0-1 provide
the offset and byte 2 is the bank number to supply to the mapping circuit.

The 1 nk64b. xcl file provides a sample of how to define the external
banks:

-b(CODE)C0DE=4C4000,4000,40000

-DCBAR=84

-DCBR=8

• The -b indicates that this CODE segment information is for banked
memory.

CONFIGURATION

• The first two characters of the first parameter (4C) indicates the
starting bank address is 4C0000.

• The second half of the first parameter (4000) gives the starting address
of the first bank as 0x4000.

• The second parameter indicates that the bank window size is 0x4000.

• The third parameter is the bank window size multiplied by 0x10.

• The first character in the CBAR specification is the hex character
identifying the 4 Kbyte boundary of the start of common area 1.

• The second character in the CBAR specification is the hex character
identifying the 4 Kbyte boundary of the start of the banked area. (The
first character must be greater than the second character. The common
area is always higher in the address space than the banked area.)

• The character in the CBR specification is the hex character identifying
the start of the data area as 8000.

CHANGING THE BANKED MEMORY SPECIFICATION
If your hardware does not use the values specified in the banked link files,
you will have to calculate the correct values for your system.

CBAR is the two hex characters representing the physical page boundaries
of the memory system. The first character is the start of the bank area and
the second is the start of common area 1.

BB R is calculated by XLINK and does not have to be specified. It is the
value to be placed into the current bank register. This number is
multiplied by 0x1000 and added to the current address when the logical
address is inside the bank area.

To calculate CBR, take the physical address of the data area, subtract the
logical address, and divide by 0x1000. This value must be specified in the
link file.

The - b (CODE) specification is based on the memory boundaries and the
bank window size.

1-65

CONFIGURATION

-b(C0DE)C0DE=cb5SSS, wwww, wwwwO

cb is the value used for the BBR register

s s s s is the logical start address

wwww is the bank window size

wwwwO is the bank window size multiplied by Oxl 0.

The physical address of code in memory is then c6*0xl000+ssss.

The utility bnksetup. exe will calculate the segment definitions and the
values of CBAR and CBR from the physical and logical addresses you supply
to it. Use this as a starting point for creating your linker command file.

There are additional points to remember when designing a system using
banked memory:

• No single module can be bigger than the bank size.

• The compiler will select the fastest calling method for a function. A
function can be forced into the non-banked portion of memory if its
execution must be done as quickly as possible. An example of this is
the 1 o op 10 function in the tutorial; see Using banked memory,
page 1-42.

• Interrupt functions cannot be banked, but they can call banked
functions.

• You can use as many - b lines in your link file as you require. If you
use one line per segment, each line with its own set of parameters, you
can assign code to a particular bank.

The 64180 has bank switching circuitry included.

CONFIGURATION

15 12 11 0

Logical address

i

r

"

V

r

Memory area
comparator
(uses CBAR)

V

r

"

V

r

Bank offset
registers (uses
CBAR and BBR)

V

r

" V

r

Adder

r 18
• ' 12 11 r 0

Physical address

If you use banked memory for the Z80, you must provide decoding
circuitry for the ROM banks. The high order address lines (A 12 to A15)
must be decoded to select which area of memory is being accessed, and an
additional decoder (driven by an I/O port for example) must provide the
bank number.

MULTI-MODULE LINKING
You may want to split your program into several C or assembler modules
to simplify maintenance. The entry to your modules should be declared in
the C main block as shown below:

extern in t mymodl (i n t myint l , i n t myint2);
i n t t o t a l ;
void main(void)
{

total=mymodl (3 , 4) ;
}

1-67

CONFIGURATION

A separate file will contain the code for mymod 1, for example as:

i n t mymodKint para l , i n t para2)
{

return (paral+=para2)
}

You can also use the module to create a shell for an assembler routine.

Compile the two modules in the regular way with the same memory model.

Place the objects resulting from the compilations into a library by using
XLIB, as follows:

XLIB
* def-cpu z80
* fetch-mod main mylib
* fetch-mod mymodl mylib
* list-mod mylib mylib.1st
* exit

Modify a copy of the linker file to include access to the library and add
your output file specifications. Name the new linker file mymod. xcl.

-! l i n k the l i b ra ry module which contains our object modules
- j

my! ib
-! specify the output file name -!
-o mulmod.aOl

The linker file can now use the modules in the library and produce an
executable program. Use the linker with the new control file:

x l i nk -f mymod

NON-VOLATILE RAM
The compiler supports the declaration of variables that are to reside in
non-volatile RAM through the no_i ni t type modifier and the memory
#pragma. The compiler places such variables in the separate segment
no_i n i t, which the user must assign to the address range of the non
volatile RAM of the hardware environment. The run-time system does not
initialize these variables.

CONFIGURATION

To assign the no_i ni t segment to the address of the non-volatile RAM,
the user must modify the linker command file. For details how to assign a
segment to a given address, see the guide IAR Assembler, Linker, &
Librarian for the Z80/64180.

STACK SIZE
The compiler uses a stack for a variety of user program operations, and the
required stack size depends heavily on the details of these operations. If
the given stack size is too small, the stack will normally be allowed to
overwrite variable storage resulting in likely program failure. If the given
stack size is too large, RAM will be wasted.

ESTIMATING THE REQUIRED STACK SIZE
The stack is used for the following:

• Storing local variables and parameters.

• Storing temporary results in expressions.

• Storing temporary values in run-time library routines.

• Saving the return address of function calls.

• Saving the processor state during interrupts.

The total required stack size is the worst case total of the required sizes for
each of the above.

OPTIMIZATION

USING THE ALTERNATIVE REGISTER SET
The Z80 has an alternative register set which can be reached by using the
EXX and EX AF, AF' instructions. The compiler has two alternative uses for
these registers: fast interrupts and normal code.

1-69

CONFIGURATION

If the - ua command line option is given, the alternative register set is
allocated for normal code. This means that:

• You cannot have interrupts using A LT E RNAT E_S ET. If the compiler
detects that you have enabled this switch and declared an interrupt
using ALTERNATE_SET you will get an error message.

• If you mix EXX usage in different modules, the linker will not detect it.
Ensure that your code modules do not specify incompatible alternate
register usage.

• The code generator will use a slightly faster bank call mechanism that
uses the AF' register.

• The code generator may allocate HL', DE', and BC' for register
variables. This will result in more compact and faster code.

• Interrupts that call functions will slow down as the code generator
must emit code to preserve the alternative register on the stack.

USING RST VECTORS
The RST vectors can be used by the compiler for frequent library calls to
reduce the code size. To select this option give the - u r command line
option.

With this option in use, the RST vectors are assigned as follows:

Vector Description

00 Not used (reset).

08 Function enter with parameters.

10 Function enter with autos and possible parameters.

18 Bank leave.

20 Non banked leave.

28 Bank call.

30 Reserved for emulator/monitor breakpoints.

38 Reserved for IM1 interrupts.

CONFIGURATION

USING UNDOCUMENTED INSTRUCTIONS
The - uu command line option allows the compiler to take advantage of
undocumented Z80 instructions. A full list of these instructions is given in
the file az80ext .s01.

The result on the code is that I XL, IXH, IYL, and IYH maybe allocated for
character register variables. This will reduce the code size and improve
speed.

Note that these are undocumented instructions and may not work on all
manufacturers' versions of the Z80, since manufacturers do not guarantee
the operation of undocumented instructions. It is important to check the
operation of any code using undocumented instructions on the particular
version of the Z80 to be used.

CHARACTER INPUT AND
OUTPUT

PUTCHAR AND GETCHAR
The functions putcha r and getcha r are the fundamental functions
through which C performs all character-based I/O. For any character-based
I/O to be available, the user must provide definitions for these two
functions using whatever facilities the hardware environment provides.

The starting-point for the user's routines are supplied, by default, in the
files c : \ i a r \ i c c z 8 0 \ p u t c h a r . c a n d c : \ i a r \ i c c z 8 0 \ g e t c h a r . c T h e
procedure for creating a customized version of putchar is as follows:

• Make the required additions to the source pu tchar .c , and save it back
under the same name.

• Compile the modified putchar using the appropriate memory model.
For example, if the user program uses the large memory model,
compile pu tchar .c for the large memory model with the command:

iccz80 putchar -ml -z9

1-71

file://c:/iar/iccz80/putchar.cand
file://c:/iar/iccz80/getchar.cThe

CONFIGURATION

This will create an optimized replacement object module file named
putchar . rOl .

• Add the new p u t c h a r module to the appropriate run-time library
module, replacing the original. For example, to add the new putcha r
module to the standard large memory model library, use the command:

xlib
def-cpu z80
rep-mod putchar dz80
exit

The library module cl z80 will now have the modified putcha r instead of
the original.

Note that XLINK allows you to test the modified module before installing
it in the library by using the -A option. Place the following lines into your
.xcl link file:

-A putchar
c!z80

This causes your version of putchar . rOl to load instead of the one in the
cl z80 library; see the IAR Z80 Assembler guide.

The same procedure is also used for getchar.

Note that putchar serves as the low-level part of the pri ntf function.

PRINTF AND SPRINTF
The pri ntf and spr i ntf functions use a common formatter called
_formatted_wri te . The ANSI standard version of _formatted_wri te is
very large, and provides facilities not required in many applications. To
reduce the memory consumption the following two alternative smaller
versions are also provided in the IAR C standard library:

_medium_write
As for _f ormatted_wri te , except that floating-point numbers are not
supported. Any attempt to use a %f, %g, %G, %e, and %E specifier will
produce the error:

FLOATS? wrong f o rma t t e r i n s t a l l e d !

CONFIGURATION

_medi um_wri te is considerably smaller than _f ormatted_wri te.

_small_write
As for _medi um_wri te, except that it supports only the %%, %d, %o, %c, %s
and %x specifiers for i nt objects, and does not support f i el d wi dth and
precision arguments. The size of _smal l_writeis 10-15% of the size of
_formatted_write.

The default version is _small_wri te.

SELECTING THE WRITE FORMATTER VERSION
The selection of a write formatter is made in the linker control file. The
default selection, _smal1_write, is made by the line:

-e_small_write=_formatted_write

To select the full ANSI version, remove this line.

To select _medi um_wri te, replace this line with:

-e_medium_write=_formatted_write

REDUCED PRINTF
For many applications spr i ntf is not required, and even pr i ntf with
_sma 11 _wri te provides more facilities than are justified by the memory
consumed. Alternatively, a custom output routine may be required to
support particular formatting needs and/or non-standard output devices.

For such applications, a highly reduced version of the entire pri ntf
function (without spri ntf) is supplied in source form in the file
i ntwri. c. This file can be modified to the user's requirements and the
compiled module inserted into the library in place of the original, using the
procedure described for put char, above.

1-73

CONFIGURATION

SCANF AND SSCANF
In a similar way to the p r i n t f and s p r i n t f functions, scanf and sscanf
use a common formatter called _f ormatted_read. The ANSI standard
version of _f ormatted_read is very large, and provides facilities that are
not required in many applications. To reduce the memory consumption,
one alternative smaller version is also provided in the IAR C standard
library.

_medium_read
As for _f ormatted_read, except that no floating-point numbers are
supported. _medi um_read is considerably smaller than _f ormatted_read.

The default version is _medi um_read.

SELECTING READ FORMATTER VERSION
The selection of a read formatter is made in the linker control file. The
default selection, _medi um_read, is made by the line:

-e_medium_read=_formatted_read

To select the full ANSI version, remove this line.

HEAP SIZE
If the library functions m a l l o c o r c a l l o c are used in the program, the C
compiler creates a heap of memory from which their allocations are made.

The procedure for changing the heap size is described in the file
c : \ i a r \ e t c \ h e a p . c .

INITIALIZATION
On processor reset, execution passes to a run-time system routine called
c s t a r t u p , which normally performs the following:

• Initializes the stack pointer.

file://c:/iar/etc/heap.c

CONFIGURATION

• Initializes C file-level and static variables.

• Calls the user program function main.

c s t a r t u p i s also responsible for receiving and retaining control if the user
program exits, whether through exi t or abort.

The user may wish to modify es t a rtup, for example to initialize special
hardware before entry to mai n, or to remove unwanted initialization of
variables.

The overall procedure for modifying c s t a r t u p i s a s follows:

• Make the required modifications to the assembler source of c s t a r tup ,
supplied by default in the file c: \ i a r \i ccz80\cs ta r t up . sOl, and
save it under the same name.

• Assemble the modified c s t a r t up using the appropriate memory
model. For example, if the user program uses the large memory model,
reassemble e s t a r tup for the large memory model with the command:

az80 cstartup.sOl

This will create a replacement object module file named c s t a r tup . rOl .

• Add the new c s t a r t u p module to the appropriate run-time library
module, replacing the original.

For example, to add the new c s t a r t u p module to the simplest large
memory model library, use the command:

xlib
def-cpu z80
rep-mod cstartup clz80
exit

The library module cl z80 will now have the modified c s t a r t u p instead of
the original.

Note that XLINK allows you to test the modified c s t a r t u p before
installing it in the library by using the - C option. Add the following lines
to the .xcl link file:

myestart
-C clz80

1-75 -

CONFIGURATION

The CSTARTUP in mycstart will load instead of the CSTARTUP program
module located in the cl z80 library. See theIAR Z80 Assembler guide for
details.

1-76

DATA
REPRESENTATION

DATA TYPES
The ICCZ80/64180 C Compiler supports all ANSI C basic elements.
Variables are stored with the least significant part located at low memory
address.

Variables are always tightly packed in memory and in structures, as the
processor architecture does not require any particular alignment.

Data type Bytes Range Notes

char (by default) 1 0 to 255 Equivalent touns igned
char

char (using -c option) 1 -128 to 127 Equivalent to si gned
char

signed char 1 -128 to 127

unsigned char 1 0 to 255

s h o r t , i n t 2 -32768 to 32767

unsigned short ,

unsigned i n t 2 0 to 65535

long 4 -2147483648 to
2147483647

unsigned long 4 0 to 4294967295

po in te r , data 2 0 to 65535

DATA REPRESENTATION

Data type Bytes Range Notes

poin te r , code,
using large
memory model

po in te r , code,
using banked
memory model

f l oa t , double,
long double

2 0 to 65535

0 to 16777216

+1.18E-38to±3.39E + 38

ENUMTYPE
The en urn keyword creates each object with the shortest integer type
(char, i nt or 1 ong) required to contain its value.

FLOATING POINT
Floating-point values are represented by 4 byte numbers in standard IEEE
format. Floating-point values below the smallest limit will be regarded as
zero, and overflow gives undefined results.

The memory layout of floating-point numbers is:

3130 23 22

S Exponent Mantissa

The value of the number is:

(-l)S * 2(Exponent-127) * i.Mantissa

Zero is represented by 4 bytes of zeros.

The precision of the float operators (+ , - ,* and /) is approximately 7
decimal digits.

1-78

DATA REPRESENTATION

POINTERS
Data pointers are always 2 bytes.

Code pointers are as follows:

Keyword Storage in bytes Memory model

non_banked 2 Large

banked 3 Banked

DATA BANKING
Banked data is not supported directly as a data type, but it is possible to
copy data from code banks. The intrinsic add ress_24_of returns a long
pointer to the code bank holding the data; see Intrinsic function reference,
page 1-109, for a detailed description of this intrinsic function.

EFFICIENT CODING
In order to get efficient code the following recommendations should be
followed when possible:

• Use the smallest possible data types: the Z80/64180 is most efficient
with byte types and rather inefficient with 4-byte types.

• Use unsi gned data types whenever possible. The Z80/64180 generally
performs uns i gned operations more efficiently than the s i gned
counterparts. This applies particularly to type conversions,
comparison, array indexing and some arithmetic operations, such as
» and /.

• Use the optimization options if possible. See Optimization, page 1-69,
for details.

1-79

DATA REPRESENTATION

1-80

LANGUAGE EXTENSIONS
The IAR C Compiler provides a number of powerful extensions that
support specific features of the Z80/64180 microprocessors.

The Z80/64180 extensions are provided in three ways:

• Extended keywords. By default, the compiler conforms to the ANSI
specifications and Z80/64180 extensions are not available. The
command line option - e makes the extended keywords available, and
hence reserves them so that they cannot be used as variable names.

• As #p r a gma keywords. #p r a gma directives are instructions to target-
specific compilers which provide additional information on how
memory should be allocated, if extended keywords are recognized, and
if warning messages are output.

• Intrinsic functions. These provide direct access to very low-level
processor details.

EXTENDED KEYWORDS
SUMMARY
The extended keywords provide the following facilities:

ADDRESSING CONTROL
By default the address range in which the compiler places a variable is
determined by the memory model chosen. In banked mode, the program
may achieve additional efficiency for special cases by overriding the
default by using the non_banked code pointer modifier.

1-81

LANGUAGE EXTENSIONS

I/O ACCESS
The program may access the Z80/64180 I/O system using the following
data type:

sf r

NON-VOLATILE RAM
Variables may be placed in non-volatile RAM by using the following data
type modifier:

no_ini t

CALLING MECHANISMS
By default the mechanism by which the compiler calls a function is
determined by the memory model chosen. The program may achieve
additional efficiency for special cases by overriding the default using one of
the function modifiers:

in ter rupt monitor using C_task

#PRAGMA DIRECTIVE SUMMARY
#pragma directives provide control of extension features while remaining
within the standard language syntax.

Note that #pragma directives are available regardless of the -e option.

The following categories of #pragma functions are available:

BITFIELD ORIENTATION
#pragma bi t f ie lds=reversed
#pragma bi t f ie1ds=defaul t

1-82

LANGUAGE EXTENSIONS

EXTENSION CONTROL
#pragma language=extended
#pragma language=defaul t

FUNCTION ATTRIBUTE
#pragma function=i interrupt
#pragma function=monitor
#pragma function=non_banked
#pragma function=default
#pragma function= C_task

MEMORY USAGE
#pragma memory=constseg(SEG_NAME)
#pragma memory=dataseg(SEG_NAME)
#pragma memory=no_init
#pragma memory=default

WARNING MESSAGE CONTROL
#pragma warnings=on
#pragma warnings=off
#pragma warnings=default

INTRINSIC FUNCTION SUMMARY
Intrinsic functions allow very low-level control of the Z80/64180
microprocessor. To use them in a C application, include the header file
i n t r z80 . h. The intrinsic functions compile into in-line code, either a
single instruction or a short sequence of instructions.

For details concerning the effects of the intrinsic functions, see the
appropriate microprocessor documentation.

1-83

LANGUAGE EXTENSIONS

GENERAL
hal t

INTERRUPTS
enable_interrupt
disable_i interrupt
interrupt_mode_0
interrupt_mode_l
interrupt_mode_2
load_I_register
dump_I_register

MEMORY AND I/O
input
output
_opc
input_block_inc
input_block_dec
output_block_i nc
output_block_dec
input8
output8
address_24_of

Z8018X/64180 ONLY FUNCTIONS
sleep
output_memory_block_i nc
output_memory_block_dec

1-84

EXTENDED KEYWORD
REFERENCE

This chapter describes the extended keywords in alphabetical order.

The following parameters are used:

Parameter What it means

storage-class Denotes an optional keyword extern or s ta t ic .

declarator Denotes a standard C variable or function
declarator.

_C_task
Declares a function that does not restore registers.

SYNTAX
C_task declarator

DESCRIPTION
Functions declared using this keyword do not restore registers. It can be
used with ma i n () and process-main functions.

EXAMPLES
The example below specifies that ma i n () does not restore registers.

C_task main()
{

}

banked

banked
Declares a banked function.

SYNTAX
storage-class banked declarator

DESCRIPTION
In the large memory model, the default position for functions is within the
single databank. The banked keyword indicates that the function is in a
different bank, and so that the compiler must call it by the slower, banked
method.

EXAMPLES
The function my_f unc is compiled using the banked memory model, but
specified as located in the non-banked area. The non-banked function calls
an assembly routine, my_moni tor, which is located in the banked area. A
banked call is therefore required:

/* declare my_monitor */
banked void my_monitor(void);

non_banked void my_func(void)
{

/* ca l l the monitor * /
my_monitor() ;

}

The keyword banked for my_moni tor is not actually needed since banked
is the default. Including the keyword improves readability and may aid
maintenance.

1-86

interrupt

interrupt
Declare interrupt function.

SYNTAX
storage-class interrupt function-declarator
storage-class interrupt [vector] function-declarator
storage-class interrupt [vector] using
[ALTERNATE_SET|JP_TO_HANDLER|NMI_INTERRUPT]
fundi on-declarator

PARAMETERS
function-declarator

[vector]

[ALTERNATE_SET]

[JP_TO_HANDLER]

[NMI_INTERRUPT]

A void function declarator having no
arguments.

A square-bracketed constant expression
yielding the vector address as an offset from
the beginning of the INTV EC table.

A square-bracketed string specifying that the
alternate register set is to be used

A square-bracketed string specifying that the
interrupting device will place an RST
instruction on the data bus.

A square-bracketed string specifying a non
maskable interrupt.

DESCRIPTION
The i n t e r r u p t keyword declares a function that is called upon a
processor interrupt. The function must be void and have no arguments.

If a vector is specified, the address of an interrupt handler that calls the
function is inserted in that vector. If no vector is specified, the user must
provide an appropriate entry in the vector table (preferably placed in the
c s t a r t u p module) for the interrupt function.

1-87

interrupt

The run-time interrupt handler takes care of saving and restoring
processor registers, and returning via the RET I instruction.

The compiler disallows calls to interrupt functions from the program itself.
It does allow interrupt function addresses to be passed to function pointers
which do not have the interrupt attribute. This is useful for installing
interrupt handlers in conjunction with operating systems.

EXAMPLES
The Z80 has three different interrupt modes. This results in three different
ways of calling an interrupt function.

The example below assumes that the interrupting device places an RST
instruction on the data bus. If I NTV EC is set to 8, the code below will result
in a J P instruction to the address of ext_l being inserted at address 8 of
the table.

in ter rupt [0] using [JP_T0_HANDLER] void ext_ l (vo id)
{

intvar++;
}

The example below shows how to code an interrupt function which uses a
vectored 16-bit interrupt or a direct call.

in ter rupt [0x24] void ext_2() /* handler for external
in ter rupt 0 */

{

ou tpu t8 (33 ,6) ;
}

A vectored call is composed of the I register and the 8 bits on the data bus.
The address of ext_2 will be placed into the I NTV EC table at offset 24. The
I register must be set in CSTARTUP or by using the l o a d _ I _ r e g i s t e r ()
intrinsic. The interrupting device must know the low byte corresponding
to location 24 of the I NTV EC table.

A direct call must use the 16-bit address of the interrupt function.

The example below does not install a vector in the I NTV EC table. Either the
interrupting device must supply a call and an address, or the address of

1-88

monitor

the function must be explicitly installed by the application to an interrupt
table.

interrupt void titner_A0() /* handler for timer AO

interrupt */
{

i f (i npu t8 (33) s t a r t _ e n g i n e () ;
}

The assembler code below shows how to directly install an interrupt
vector for mode 2:

RSEG INTVEC
EXTERN timer_A0
DEFS 4 ; sk ip 4 bytes
DEFW timer_A0

The assembler code below shows how to directly install an interrupt
instruction for modes 0 and 1:

RSEG INTVEC
EXTERN my_int
DEFS 16-SFBCINTVEC) ; skip to address 16
JP my_int

monitor
Make function atomic.

SYNTAX
storage-class monitor function-declarator

D E S C R I P T I O N
The moni t o r keyword causes interrupts to be disabled during execution of
the function. This allows atomic operations to be performed, such as
operations on semaphores that control access to resources by multiple
processes.

1-89 •

nonjbanked

A function declared with moni tor is equivalent to a normal function in all
other respects.

EXAMPLES
The example below disables maskable interrupts while the flag variable is
modified.

char p r in te r_ f ree ; /* p r in te r - f ree semaphore */
monitor i n t got_f!ag(char * f lag) /* With no danger of

in ter rupt ion ... */
{

i f (! * f l ag) / * test i f available * /
{

return (* f lag = 1) ; /* yes - take */
}
return (0); /* no - do not take */

}

void f(void)
{
if (got_flag(&printer_free)) /* act only if printer is

free */
. action code

nonjbanked
Declares a non-banked function.

SYNTAX
storage-class non_banked declarator

DESCRIPTION
By default, in the banked memory model, all functions are callable from
any bank. The non_banked keyword indicates that the function is always

1-90

no init

in the same bank as the caller, and so the compiler can call it by the faster,
unbanked method.

EXAMPLES
Function my_nb has been coded as non-banked in another module. The
module containing my_nb_cal 1 er was compiled with the banked memory
option:

extern non_banked void my_nb(void)
{

}
void my_nb_ca Her (void)
{

my_nb();

}

no_init
Type modifier for non-volatile variables.

SYNTAX
storage-class no_init declarator

DESCRIPTION
By default, the compiler places variables in main, volatile RAM and
initializes them on start-up. The no_i n i t type modifier causes the
compiler to place the variable in non-volatile RAM and not to initialize it
on start-up.

no_in i t variables are assumed to reside in bank 0. no_i n i t variable
declarations may not include initializers.

1-91

/* call foo by faster non-
banked method */

sfr

If non-volatile variables are used, it is essential for the program to be
linked to refer to the non-volatile RAM area. For details, see Non-volatile
RAM, page 1-68.

EXAMPLES
The examples below show valid and invalid uses of the no_i n i t keyword.

no_ini t i n t se t t ings [50] ; / * array of non-volat i le
sett ings * /

no_in i t i n t i = 1 ; /* i n i t i a l i z e r included -
inva l id * /

sfr
Declare object of one-byte I/O data type.

SYNTAX
sfr identifier = constant-expression;

DESCRIPTION
s f r denotes a Z80/64180 SFR-register which:

• Is equivalent to unsi gned char.

• Can only be directly addressable.

• Resides at a fixed location in the range 0 to OxFF.
The value of an s f r variable is the contents of the SFR register at the
address constant-express ion. All operators that apply to integral types
except the unary & (address) operator maybe applied to sf r variables.

Predefined sfr declarations for popular members of the Z80 family are
supplied; see Installed files, page 1-9.

The s f r type generates an IN or OUT instruction for assignments (I NO or
OUTO for the 64180 and Z8018X).

1-92

using

EXAMPLES
The example below shows how to define STATO.

sfr STATO = 0x4;
void func()
{
STAT0=1;

if (STATO & 8) p r i n t f C W) ;

/* Defines P0 */

/* Set entire port STAT0=
00000001 */
/* Read entire STATO and
mask bit 3 */

}

using
Specifies a register bank for use by an interrupt service routine.

SYNTAX
{storage-class} in ter rupt {vector} {using [flags] }
funct ion-declarator

PARAMETERS
vector A constant expression which is the offset from the start of

INTVEC where the vector or the J P is to be installed.

flags A number which selects options to be used when
processing the interrupt. The file i n tz80. h contains the
following definitions:

ALTERNATE SET

NMI INTERRUPT

The interrupt saves the
environment using EXX and EX
AF.AF"

The return from the interrupt is
done with a RETN instruction
instead of the default RET I.

1-93

using

J P_TO_H AN D L E R A J P 1 a be 1 is inserted instead of
the DEFW 1 abel in the interrupt
table.

DESCRIPTION
The usi ng keyword allows an interrupt service routine declaration to
specify details about the interrupt type (NMI or IRQ), how to call the
interrupt function, and whether the alternate register set should be used.

EXAMPLES
The example below assumes that the interrupting device places an RST
instruction on the data bus. If I NTV EC is set to 8, the code below will result
in a J P instruction to the address of ext_l being inserted at address 8 of
the table.

i n te r rup t [0] using [JP_T0_HANDLER] void ext_l (void)

{

intvar++;

}

The example below shows how to code an interrupt function which uses a
vectored 16-bit interrupt.

i n te r rup t [0x24] void ext_2() /* handler for external
in ter rupt 0 */

{
ou tpu t8 (15 ,6) ;

}

A vectored call is composed of the I register and the 8 bits on the data bus.
The address of ext_2 will be placed into the I NTV EC table at offset 24. The
I register must be set in CSTARTUP or by using the l o a d _ I _ r e g i s t e r ()
intrinsic. The interrupting device must know the low byte corresponding
to location 24 of the I NTV EC table.

The example below does not install a vector in the I NTV EC table. Either the
interrupting device must supply a call and an address, or the address of the

using

function must be explicitly installed by the application to an interrupt
table.

nterrupt void timer_A0() /* handler for timer AO
interrupt * /

i f (input8(33) start_engine() ;

The usi ng flags can be combined as shown below:

n t e r r u p t [8] using [ALTERNATE_SET|JP_TO_HANDLER]
my_ in t (vo id)

count++;

1-95

using

1-96

#PRAGMA DIRECTIVE
REFERENCE

This chapter describes the #pragma directives in alphabetical order.

bitfields = default
Restores default order of storage of bitfields.

SYNTAX
#pragma bitfields = default

DESCRIPTION
This directive causes the compiler to allocate bitfields in its normal order.
See b i t f i e ld s=reve r sed .

bitfields = reversed
Reverses order of storage of bitfields.

SYNTAX
#pragma bit f ields=reversed

DESCRIPTION
This directive causes the compiler to allocate bitfields starting at the most
significant bit of the field, instead of at the least significant bit. The ANSI
standard allows the storage order to be implementation-dependent, so you
may run into portability problems, which this keyword can be used to
avoid.

bitfields = reversed

EXAMPLES
The default layout of

st ruc t
{
short a:3;
short : 5 ;

short b:4;
} b i t s ;
in memory is:

15 1211

/ * a is 3 b i t s * /
/ * t h i s reserves a hole of
5 b i t s * /
/ * b is 4 b i t s * /
/ * b i t s i s 1 6 b i t s * /

32

hole (4) b:4 hole (5) a: 3

#pragma b i t f i e l d s = r e v e r s e d
s t r u c t
{

short a:3;
short :5 ;

shor t b : 4 ;
} b i t s ;
has the following layout:

15 1312

/ * a is 3 b i t s * /
/ * t h i s reserves a hole of
5 b i t s * /
/ * b is 4 b i t s * /
/ * b i t s i s 1 6 b i t s * /

43

a: 3 hole (5) b:4 hole {4}

function = C_task

function = C_task
Declares a function that does not restore registers on exit.

SYNTAX
#pragma function= C_task

DESCRIPTION
Functions declared with this pragma do not restore registers. It can be used
with main() and process-main functions.

EXAMPLES
The example below specifies that ma i n () does not restore registers.

#pragma f u n c t i o n - C_task
main()
{

}

function = default
Restores function definitions to the default type.

SYNTAX
#pragma func t ion=defau1t

DESCRIPTION
Return function definitions to near or far, as set by the selected memory
model. See function=banked.

1-99

function = in ter rupt

EXAMPLES
The example below specifies that an external function f 1 can be called as a
non_banked function, while f3 is the default type (banked or non_banked
depending on the compiler options).

#pragma function=banked
extern void fl(); /* Identical to extern far

void fl() */
#pragma function=defau!t
extern int f3(); /* Default function type

*/

function = interrupt
Makes function definitions interrupt.

SYNTAX
#pragma funct ion=interrupt

DESCRIPTION
This directive makes subsequent function definitions of i nterrupt type.
It is an alternative to the function attribute i nterrupt.

See the file i ntz80. h for a list of pre-defined interrupt function addresses.
The definitions assume that the interrupt address segment INTVEC is
located at 0x08.

Note that #pragma f uncti on=i nterrupt does not offer a vector option.

1-100

function = monitor

EXAMPLES
The example below shows an interrupt function process_in t . The
address of this function must be placed into the I NT V EC table.

#pragma funct ionHnterrupt
void process_int() /* an in ter rupt function */
{
}
#pragma function=defaul t

function = monitor
Makes function definitions moni tor.

SYNTAX
#pragma function=monitor

DESCRIPTION
This directive makes subsequent function definitions of moni to r type. It is
an alternative to the function attribute moni tor .

EXAMPLES
The example below disables interrupts while a flag bit is set.

#pragma function=monitor
void f2() /* Will make f2 a monitor

function * /
{

f lag |= 01;
}

1-101

function = nonjbanked

function = nonjbanked
Makes function definitions non_banked.

SYNTAX
#pragma function=non_banked

DESCRIPTION
This directive places subsequent function definitions into the non-banked
code area. It is an alternative to the function attribute non_banked.

EXAMPLES
The example below declares f 1 to be in the non-banked memory area. The
external function should be used with an accessible segment identifier
such as RCODE. A function declared as non-banked will appear in the
RCODE segment.

#pragma function=non_banked
extern void fl(); /* Identical to extern

non_banked void fl() */

language = default
Restores availability of extended keywords to default.

SYNTAX
#pragma language=default

DESCRIPTION
This directive returns extended keyword availability to the default set by
the -e compiler option. See 1 anguage=extended.

1-102

language = extended

language = extended
Makes extended kejrwords available.

SYNTAX
#pragma language=extended

DESCRIPTION
This directive makes the extended kejrwords available regardless of the
state of the -e compiler option. It is an alternative to the -e compiler
option. See Extended keyword reference, page 1-85, for details.

EXAMPLE
In the example below, the non_banked extended language modifier is
enabled for the definition of the function ccount. mycount is defined in
the standard way.

#pragma language=extended
extern non_banked i n t ccount(void)
#pragma language=default
extern i n t mycount(void)

memory = constseg
Directs constants to the named segment by default.

SYNTAX
#pragma memory=constseg (seg_name)

1-103

memory = dataseg

DESCRIPTION
This directive directs constants to the named segment by default. It is an
alternative to the memory attribute keywords. The default may be
overridden by the memory attributes.

The segment must not be one of the compiler's reserved segment names as
listed in Assembly language interface, page 1-117.

EXAMPLES
The example below places the constant array a r r into the ROM segment
TABLE.

#pragma memory=constseg(TABLE)
char a r [] = {6, 9. 2. -5 , 0} ;
#pragma memory = defaul t

If another module accesses the array it must use an equivalent declaration:

#pragma memory=constseg(TABLE)
extern char * ar r ;

memory = dataseg
Directs variables to the named segment by default.

SYNTAX
#pragma memory=dataseg (seg_name)

DESCRIPTION
This directive directs variables to the named segment by default. The
default may be overridden by the memory attributes.

No initial values maybe supplied in the variable definitions. Up to 10
different alternate data segments can be defined in any given module. You
can switch to any previously defined data segment name at any point in
the program.

1-104

memory = default

EXAMPLES
The example below causes four bytes to be allocated from the named
segment myseg.

#pragma memory=dataseg (myseg)
char myseg_cl;
char myseg_c2;
i n t myseg_int;
#pragma memory=default

If another module wishes to access these symbols, the equivalent extern
declaration should be used:

#pragma memory=dataseg(myseg)
extern char myseg_cl;

memory = default
Restores direction of objects to the default area.

SYNTAX
#pragma memory=default

DESCRIPTION
This directive restores memory allocation of objects to the default area, as
specified by the memory model in use.

EXAMPLES
See Memory = dataseg, page 1-104.

1-105

memory = no_imt

memory = nojbtiit
Direct variables to the N0_I NIT segment by default.

SYNTAX
#pragma memory=no_init

DESCRIPTION
This directive directs variables to the no_i ni t segment, so that they will
not be initialized and will reside in non-volatile RAM. It is an alternative
to the memory attribute no_i n i t. The default may be overridden by the
memory attributes.

The no_i n i t segment must be linked to coincide with the physical address
of non-volatile RAM; see Configuration, page 1-59, for details.

EXAMPLES
In the example below the variable array buffer is not initialized when the
program starts.

#pragma memory=no_init
char buf fer [1000] ; /* in un in i t i a l i zed memory */
#pragma memory=default
i n t i , j ; / * defaul t memory type */

Note that a non-default memory #pragma will generate error messages if
function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the stack.

warnings = default

warnings = default
Restores compiler warning output to default state

SYNTAX
#pragma warnings=default

DESCRIPTION
Return output of compiler warning messages to the default set by the - w
compiler option. See#pragma warm'ngs=on and #pragma warnings=off.

warnings = off
Turns off output of compiler warnings.

SYNTAX
#pragma warnings=off

DESCRIPTION
This directive disables output of compiler warning messages regardless of
the state of the -w compiler option. It is an alternative to the -w compiler
option.

1-107

warnings = on

warnings = on
Turns on output of compiler warnings.

SYNTAX
#pragma warnings=on

DESCRIPTION
This directive enables output of compiler warning messages regardless of
the state of the - w compiler option.

1-108

INTRINSIC FUNCTION
REFERENCE

This chapter describes the intrinsic functions in alphabetical order.

address_24_of
Returns the address of a function or data area in the banked area.

SYNTAX
address_24_of{memory_1 ocation);

PARAMETERS
memory- location A pointer to a memory location in a banked code

segment.

DESCRIPTION
The 24-bit address can be used by intrinsic functions.

EXAMPLE
The example below creates an area of banked data and copies data from
the banked area into a buffer in RAM.

extern non_banked void memcpy_from_bank (char *, unsigned
i n t , unsigned long);
#pragma memory=constseg(BANKED_DATA)
const unsigned char bank_data[]={l,2,3,4,5};
#pragma memory=default
unsigned char buf[10]
void main(void)

address 24_of

{

unsigned char str[16];
for (i=0; i<5; i+=2)
memcpy_from_bank(buf,2,address_24_of(&bank_data)+i);

}

The function which does the copying must change the bank pointers. It
must therefore be located in non-banked memory. It can only access the
following intrinsic library functions: memcpy, strcpy, strcat , str len,
memset, memcmp, strump, or s t rchr . Other library functions will fail to
access the banked-data memory as the function-call mechanism switches
the bank.

#include <stdio.h>
#include <string.h>
#inc"lude "intrz80.h"

sfr bank_port=39;

non_banked void memcpy_from_bank(char *dest, unsigned int
count, unsigned long address)
{
char bankvar=bank_port; /* save old bank pointer

*/

/* switch memory banks to the data bank */
bank_port=address>>16;
/* test for space to copy string */
if (str!en(char *) address <max)
strcpy(dest, (char *) address);

else
dest=NULL;

/* restore bank */
bank_port=bankvar;
return dest;

1-110

disable_interrupt

disable_interrupt
Generates a DI instruction.

SYNTAX
void d isable_interrupt(void) ;

dump_I_register
Reads from the I register and returns the contents.

SYNTAX
unsigned char dump_I_register(void);

enable_interrupt
Generates an EI instruction.

SYNTAX
void enable_interrupt(void);

halt
Generates a HALT instruction.

SYNTAX
void ha l t (vo id) ;

1-111

input

input
Reads from a port using a 16-bit address IN instruction.

SYNTAX
unsigned char input(unsigned short)

input8
Reads from a port using the I NO instruction for the 64180 or the 8-bit
address IN instruction on the Z80.

SYNTAX
unsigned char input8(unsigned char)

DESCRIPTION
For the 64180, the port number must be resolvable at compile time. The
Z80 does not have this restriction.

input_block_dec
input_block_inc
Generates an INIRor INDRinstruction.

SYNTAX
void input_b1ock_dec(unsigned char, unsigned char *,
unsigned char);
void input_block_inc(unsigned char, unsigned char *,
unsigned char);

1-112

interrupt_mode_0/1 /2

DESCRIPTION
Generates anINDRorlNIR instruction. The first argument is the port (C),
second is the memory address (HL), and the third argument is the count
(B).

interrupt_mode_0
interrupt_mode_l
interrupt_mode_2
Generates an I MO, I Ml, or IM2 instruction, respectively.

SYNTAX
void interrupt_mode_0(void);
void interrupt_mode_l(void);
void interrupt_mode_2(void);

output
Writes to a port using the OUT instruction with a 16-bit port address.

SYNTAX
void output(unsigned short, unsigned char);

DESCRIPTION
The first argument is the port and the second the value to be written.

1-113

output8

output8
Writes to a port using the OUTO instruction for the 64180 or the OUT
instruction for the Z80.

SYNTAX
void output8(unsigned char, unsigned char);

DESCRIPTION
The first argument is the port number and the second is the value to be
written.

For the 64180, the port number must be resolvable at compile time. The
Z80 does not have this restriction.

output_block_dec
output_block_inc
Generates an OTDR or OTIR instruction.

SYNTAX
void output_b1ock_dec(unsigned char, unsigned char *,
unsigned char);
void output_block_inc(unsigned char, unsigned char *,
unsigned char);

DESCRIPTION
The first argument is the port (C), second is the memory address (HL), and
the third argument is the count (B).

1-114

output_memory_block_dec/inc

output_memory_block_dec
output_memory_block_inc
Generates an OTDMR or OTIMR instruction (64180/Z8018X only).

SYNTAX
void output_memory_block_dec(unsigned char, unsigned
unsigned char);
void output_memory_block_inc(unsigned char, unsigned
unsigned char);

DESCRIPTION
The first argument is the port, second is the memory address, and third
argument is the count.

sleep
Generates an SLP instruction (64180/Z8018X only).

SYNTAX
void sleep(void)

1-115

char * ,

char * ,

ope

_opc
Inserts an opcode.

SYNTAX
_opc(c)

DESCRIPTION
The _opc() intrinsic takes a single constant character c as a parameter;
this is emitted by the compiler in the form of a DEFB assembler command.
The intention of the macro is to create assembler opcodes for instructions
difficult to describe in C.

To use this macro you must include the line #i ncl ude <i ntrz80. h> and
select the extended language option -e either from the command line or
with the corresponding #pragma.

Use this function with great caution as it can easily confuse the optimizer.

EXAMPLE
The example below increments the 16-bit contents of a location in
memory. Note that (*((short*)0x0020))++ will produce the same code
from C.

void set_f ixed_locat ion()

{
_opc(0x2A)
_opc(0x20)
_opc(0x00)
_opc(0x23)
_opc(0x22)
_opc(0x20)
_opc(0x00)

/* load HL */
/* address */

/* increment HL */
/* store value */

}

Standard C statements can almost always be used instead of _opc and will
allow the compiler to optimize the code. The use of _opc is discouraged.

1-116

ASSEMBLY LANGUAGE
INTERFACE

The ICCZ80/64180 C Compiler allows assembly language modules to be
combined with compiled C modules. This is particularly used for small,
time-critical routines that need to be written in assembly language and
then called from a C main program. This chapter describes the interface
between a C main program and assembly language routines.

CREATING A SHELL
The recommended method of creating an assembly language routine with
the correct interface is to start with an assembly language source created
by the C compiler. To this shell the user can easily add the functional body
of the routine.

The shell source needs only to declare the variables required and perform
simple accesses to them, for example:

int k;
int foo(int i , int j)
{
char c;
i++;

C++;
k++;

}
void f(void)
{
foo(4,5);

}

/* Access to i */
/* Access to j */
/* Access to c */
/* Access to k */

/* Call to foo */

ASSEMBLY LANGUAGE INTERFACE

This program is then compiled as follows:

i ccz80 s h e l l -A -q -L

The -A option creates an assembly language output, -q includes the C
source lines as assembler comments and - L creates a listing.

The result is the listing file she l l . sOl containing the declarations,
function call, function return and variable accesses.

The following sections describe the interface in detail.

CALLING CONVENTION
Up to two parameters can be passed in registers; other parameters are
transferred on the stack.

The compiler assembler interface selects the parameters that can be placed
in the registers as follows:

Parameters, types, and locations

1 2 Remaining parameters

Byte
E

Byte
C

All types
Pushed

Byte
E

Word
BC

All types
Pushed

Byte
E

3 bytes (pointer)
Pushed

All types
Pushed

Word
DE

Byte
C

All types
R7

Word Word All types
DE BC Pushed

ASSEMBLY LANGUAGE INTERFACE

Parameters, types, and locations

1 2 Remaining parameters

3 bytes (pointer)
CDE

All types
Pushed

All types
Pushed

4 bytes (long etc.)
BCDE

All types
Pushed

All types
Pushed

Variable arguments
Pushed

All types
Pushed

All types
Pushed

STACK USE
The remaining parameters, which are not transferred in registers, are
pushed on the stack in reverse order, ie the last parameter is transferred
first. Pushed parameters are removed by the caller after returning from the
called function.

The stack model used by C functions differs depending on the options for
speed or monitor functions. A typical stack frame is shown below. If you
do not use a shell function for the assembler routine, you must ensure that
your stack usage is compatible with the compile options:

Parameters, except
first one or two

Return address

Saved registers

Stack
Location of first

parameter

Auto variables

Stack pointer SP -J Temporary starve"

1-119

High address

Low address

ASSEMBLY LANGUAGE INTERFACE

VARIABLE ARGUMENTS
All va ra rg functions expect every parameter on the stack. Creating a
va ra rg function in one module and calling it from another without the
prototype will fail:

/* In module 1 */
void foo(int xx, _.)
{

}

/* In module 2 */
main()
{
food,2,3,4); /* Will fail if prototype

for foo() has not been
included */

}

You will get an error message from the linker if you have compiled with
the -gA option. Library vararg functions such as pri ntf are recognized
by the compiler and an error will be given if there is no prototype defined.

If you create a routine in assembler directly, you will need to manage the
stack. It is much simpler to create a C shell with the correct number and
type of parameters and then modify the assembler output.

RETURN VALUES
The return value is given in registers if possible, otherwise it is at the
pointed-to location in the caller's own storage space.

The return value from a function will be placed into the registers as shown
opposite.

1-120

ASSEMBLY LANGUAGE INTERFACE

Type Register

char A (from a non-banked function)

char L (from a banked function)

word HL

po in te r HL

banked function poin ter CHL

long, f l oa t , or double BCHL

PRESERVING REGISTERS
A and HL are always considered destroyed after a function call. Registers
used for parameters are also considered destroyed after a function call; this
includes the entire 16-bit register. For example, if E is used for a parameter
DE is considered destroyed. All other registers (excluding return value
registers) must be preserved by the called function.

For example, consider the following function prototype:

long f o o (i n t , ._)

A and HL are always destroyed, BC is destroyed since it is used for the
return value. Since this is a vara rg function it does not take any
parameter in registers which means that IX, IY, and DE must be preserved
as usual.

If the alternative register set is in use by the code generator - ua, H L' is
considered destroyed after each function call, but DE' and BC' must be
preserved.

1-121

ASSEMBLY LANGUAGE INTERFACE

CALLING ASSEMBLY ROUTINES
FROMC
An assembler routine that is to be called from C must:

• Conform to the calling convention described above.

• HaveaPUBLIC entry-point label.

• Be prototyped before any call, to allow type checking and promotion of
parameters, as in extern i nt f ood nt i, i nt j).

In addition, it should be located in the segment CODE or, if declared with
the non_banked keyword, RCODE (but you can use any segment name
provided you declare it properly in the link file).

LOCAL STORAGE ALLOCATION
If the routine needs local storage, it may allocate it in one or more of the
following ways:

• On the hardware stack.

• In static workspace, provided of course that the routine is not required
to be simultaneously re-usable ("re-entrant").

INTERRUPT FUNCTIONS
The calling convention cannot be used for interrupt functions since the
interrupt may occur during the calling of a foreground function. Hence the
requirements for interrupt function routine are different from those of a
normal function routine, as follows:

• The routine must preserve all registers.

• The routine must exit using RET I or RETN.

1-122

ASSEMBLY LANGUAGE INTERFACE

DEFINING INTERRUPT VECTORS
As an alternative to defining a C interrupt function in assembly language
as described above, the user is free to assemble an interrupt routine and
install it directly in the interrupt vector.

The user must place the actual interrupt routine in the RCODE segment. See
the interrupt keyword in the Extended keyword reference, page 1-85, for an
example of interrupt installation.

EXAMPLE
A shell function declared as long my_int (long a, unsigned shor t b)
for Z80/64180 is shown below:

long my_int (long a, unsigned shor t b)

{
long temp;
if (b>6) temp—1;
else temp=a/b;
r e tu rn (t emp) ;

}

Parts of the list file are described below:

1 long my_int (long a, unsigned short b)
2 {

\ 0000 my_int:
\ 0000 CD0000 CALL ?ENT_AUT0_DIRECT_L09

\ 0003 FCFF DEFW -4

The function is entered and temporary variable space is reserved.

3 long temp;

4 if (b>6) temp=-l;
\ 0005 DD4E08 LD C,(IX+8)
\ 0008 DD4609 LD B,(IX+9)
\ 000B 210600 LD HL.6
\ 000E A7 AND A
\ 000F ED42 SBC HL.BC
\ 0011 3010 JR NC,70001

1-123

ASSEMBLY LANGUAGE INTERFACE

The short parameter is tested and a jump made to the assignment.

\ 0013 70000:
\ 0013 06FF LD B.-l
\ 0015 DD70FC LD (IX-4),B
\ 0018 DD70FD LD (IX-3KB
\ 001B DD70FE LD (IX-2),B
\ 001E DD70FF LD (IX-l).B
\ 0021 1826 JR 70002

i temporary variable pointed to by IX is set to -1.

\ 0023 70001:
5 else : temp=a /b;

\ 0023 DD6E08 LD L.CIX+8)
\ 0026 DD6609 LD H.CIX+9)
\ 0029 010000 LD BC.O
\ 002C C5 PUSH BC
\ 002D E5 PUSH HL
\ 002E DD4E04 LD C.CIX+4)
\ 0031 DD4605 LD B.CIX+5)
\ 0034 DD6E02 LD L,(IX+2)
\ 0037 DD6603 LD H,(IX+3)
\ 003A CD0000 CALL ?SL_DIV_L03
\ 003D DD75FC LD (IX-4),L
\ 0040 DD74FD LD (IX-3),H
\ 0043 DD71FE LD (IX-2),C
\ 0046 DD70FF LD (IX-l).B

Note that the compiler has adjusted the parameter b by extending it to four
bytes.

\ 0049 70002:
6 ret urn(temp);

\ 0049 DD4EFE LD C,(IX-2)
\ 004C DD46FF LD B.(IX-l)
\ 004F DD6EFC LD L.(IX-4)
\ 0052 DD66FD LD H.UX-3)

1-124

ASSEMBLY LANGUAGE INTERFACE

The temporary variable is copied into the registers which hold a long
r p f u r n Tronic return value.

7 }
\ 0055 C30000 JP ?LEAVE 32
\ 0058 END

L09

The compiler uses an indirect exit to clean up after the function calls. If
you had used a direct entry and exit, you would have needed to manage
the temporary variables and stack maintenance yourself.

1-125

ASSEMBLY LANGUAGE INTERFACE

1-126

SEGMENT REFERENCE
The IAR C Compiler places code and data in to named segments which are
referred to by the linker. Details of the segments is required for
programming assembly language modules, and is also useful when
interpreting the assembly language output of the compiler.

This section provides an alphabetical list of the segments. For each
segment, it shows:

• The name of the segment.

• A brief description of the contents.

• Whether the segment is read/write or read-only.

• Whether the segment may be accessed from the assembly language
("assembly-accessible") or from the compiler only.

• A fuller description of the segment contents and use.

MEMORY MAP DIAGRAM
The diagram on the following page shows the Z80/64180 memory map,
and the allocation of segments within each memory area.

SEGMENT REFERENCE

RAM

UDATAO

RAM

ECSTR

RAM
CSTACK

RAM
NOJNIT

RAM

DATAO

RAM

IDATAO

CODE Executable code
Optional, banked
executable code

RCODE

Non-banked executable code

RCODE

INTVEC

RCODE

CONST

RCODE CCSTR RCODE

CSTR

RCODE

CDATAO

RCODE

RESTART

1-128

CCSTR

CCSTR
String initializers.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds C s t r i ng literal initializers when the -y (put string literals into
variable section) compiler option is active.

CODE
Code.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds user program code, various library routines that can run in
alternative banks, and code from assembly language modules.

Note that any assembly language routines included in the CODE segment
must meet the calling convention of the memory model in use.

1-129

CONST

CONST
Constants.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Used for storing const and code objects. Can be used in assembly
language routines for declaring constant data.

CSTACK
Stack.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds the internal stack.

This segment and length is normally defined in the XLINK file by the
command:

-Z(DATA)CSTACK+/7/7=sta/~t

where nn is the length and start is the location.

1-130

CSTR

CSTR
String literals.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds C string literals. See the description of the -y option (put C string
literals into RAM) in Command line options in the IAR C Compiler -
General Features guide.

ECSTR
Writable string literals.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds writable copies of C string literals when the compiler's -y option is
active. See the description of the -y option (put C string literals into RAM)
in Command line options in the IAR C Compiler - General Features guide.

1-131

CDATAO

CDATAO
Variable initializer.

TYPE
Read-only.

DESCRIPTION
Compiler-only.

Holds non-banked variable initializers. These values are copied over from
CDATAO to IDATAOby CSTARTUP during initialization.

DATAO
Uninitialized near static variables.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds near static variables which are not to be zeroed on start-up.

INTVEC

INTVEC
Interrupt vectors.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

Holds the interrupt vector table generated by the use of the interrupt
extended keyword (which can also be used for user-written interrupt
vector table entries).

IDATAO
Initialized near static variables.

TYPE
Read/write.

DESCRIPTION
Compiler-only.

Holds near static variables which have been declared with explicit initial
values. Their initial values are copied over from the corresponding
segment by CSTARTUP during initialization.

1-133

NO nsnrr

NOJNIT
Non-volatile variables.

TYPE
Read/write.

DESCRIPTION
Assembly-accessible.

Holds variables to be placed in non-volatile memory. These will have been
allocated by the compiler, declared n o_i n i t or created n o_i n i t by use of
the memory #pragma, or created manually from assembly language source.

RCODE
Vector handling code.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible non-banked code used by code generator intrinsic
functions.

This segment can also be used for user-written non-banked assembler code
that is not called from C (interrupt handlers and similar resident code).

1-134

TEMP

TEMP
Static mode auto variables. Used with the -d option.

TYPE
Read/write.

DESCRIPTION
STATIC function arguments are always placed on the stack. Re-entrant
mode (the default) sometimes generates more and slower code. Auto
variables are allocated and deallocated dynamically (on the stack).

UDATAO
Uninitialized nea r static variables.

TYPE
Read/write.

DESCRIPTION
Assembler-accessible.

Holds near static variables which were declared without initial values .
ANSI C specifies that such variables be set to zero before they are
encountered by the program, so they are set to zero by CSTARTU P during
initialization. UDATAO can also hold user-written data elements that should
initially be set to zero.

1-135

UDATAO

1-136

Z80 COMMAND LINE
OPTIONS

In addition to the command line options described in Command line
options in the IAR C Compiler - General Features guide, the Z80/64180 C
Compiler has the following options:

ICCZ80 COMMAND LINE OPTIONS SUMMARY
-m{l | b) Selects memory model.

-u{a | r | u} Sets optimization options.

-v{0 | 1} Selects the processor.

-W[ss] Set stack optimization: allow ss bytes of garbage.
The option - P (generate PROMable code) is ignored - the compiler
generates PROMable code by default.

-m
Selects memory model.

SYNTAX
-m{l | b}

DESCRIPTION
Use the -m option to select the memory model, as follows:

Modifier Memory model

1 Large (the default)

b Banked

-u

For more information see Memory model, page 1-61.

Note that all modules of a program must use the same memory model, and
must be linked with a library file for that model.

-u
Sets optimization options.

SYNTAX
-u{a | r | u}

DESCRIPTION
Sets the compiler optimization as follows:

Option Description

a Lets the compiler use the alternative register set. This
excludes them from being used by interrupts.

r Lets the compiler use RST vectors to reduce the code size.
Banked call, return, and function routines will be called
using RST instructions rather than CALL. This will reduce
the code size, but will also slow the code down.

u Lets the compiler use undocumented instructions to
reduce code size and increase execution speed; see
Optimization, page 1-69, for details.

1-138

-V

Selects the processor.

SYNTAX
-v{0 | 1}

DESCRIPTION
Use - vO to generate code for the Z80 processor and - vl for the
64180/Z8018X.

-w
Sets the stack optimization limit.

SYNTAX
-W[ss]

DESCRIPTION
The number of clean-ups of the stack is reduced by specifying stack
optimization with the -W option. For example, by specifying -W50, the
compiler is instructed to allow 50 bytes of garbage on the stack before
triggering stack clean-up. The default setting is -W16, ie 16 bytes of
garbage. Also see Stack size, page 1-69.

-w

1-140

Z80 DIAGNOSTICS
In addition to the error and warning messages described in Diagnostics in
the IAR C Compiler - General Features guide, the Z80/64180 C Compiler
has the following error messages:

Error message Suggestion

Address argument required

non-banked/interrupt
functions must be defined
in a separate module

Cannot have both ' -ua ' and
ALTERNATE_SET interrupts

You must #include <stdio.h>
i f you ca l l pr in t f /scanf

Constant argument required

Cannot compare banked code
pointers

The address_24_of () intrinsic
function must take a pointer to an
absolute object.

When compiling in banked memory
model and a function is declared to
be non_banked, all functions in that
module must be non_banked. This
error is also given for i n te r rupt
functions as they must reside in the
RCODE segment.

When compiling with the switch
- ua no interrupt may be declared to
use the alternative register set.

Since ICCZ80 uses a special
parameter model for va ra rg
functions a prototype must be
included. Include s t d i o. h to get the
prototype.

Some intrinsic functions (_opc,
input8, output8) require an
argument that can be evaluated at
compile time.

Comparing banked pointers using
<, >, <=, and >= is forbidden.

1-141

Z80 DIAGNOSTICS

Error message Suggestion

Long b i t f ie lds are not Only char, int, or short bitfields
supported are supported.

1-142

IAR C COMPILER -
GENERAL FEATURES

Third edition: July 1994
Part no: ICCGEN-3

CONTENTS
Command line options summary 2-1

Command line options 2-5

General C language extensions 2-33

General C library definitions 2-37

Introduction 2-37

C library functions reference 2-45

K&R and ANSI C language definitions 2-139

Diagnostics 2-145
Compilation error messages 2-147
Compilation warning messages 2-166

CONTENTS

2-iv

GENERAL COMMAND
LINE OPTIONS

SUMMARY
The ICC Compiler has an extensive set of command line options that
control its operation. Those options common to all targets are documented
in this chapter. In addition there may be options specific to this particular
target, in which case these are documented in the chapter Target specific
command line options.

Each option consist of a hyphen (-) followed by an option identifier. Some
options are followed by an optional or obligatory argument. If the
argument is a file leafname, it must be separated from the option identifier
by one or more space or tab characters, for example:

-o objfile

All other types of arguments (including file prefixes) must immediately
follow the identifier, for example:

-Opathname

The position of an option in the command line has no significance in itself.
However in the case of the options - D and - 1 , the order of multiple options
is important.

The options are arranged into the following functional groups:

FILE CONTROL
- a file Generates assembler source.

-kprefix Generates assembler source.

- f file Reads command line options from a file.

- G Opens the standard input as source.

-1 prefix Adds an include file search prefix.

GENERAL COMMAND LINE OPTIONS SUMMARY

-1 file Generates a listing.

- Lprefix Generates a listing.

-o file Specifies object filename.

-Oprefix Specifies object filename.

LISTING CONTROL
- F Generates a formfeed after each listed function.

- i Lists included files.

-p/7 Formats listing into pages.

- q Puts mnemonics in the listing.

-1 n Sets the tab spacing.

-T Lists active lines only.

-x [D][F] [T][2] Generates a cross-reference list.

CODE CONTROL
- b Makes object a library module.

- e Enables target dependent extensions.

- H name Sets the object module name.

- P Generates PROMable code.

- r [0 1 2] [i] [n] Generates debug information.

- Rname Sets the code segment name.

- s [0 - 9] Optimizes for speed.

- z [0 - 9] Optimizes for size.

-y Initializes strings as variables.

LANGUAGE SPECIFICATION
- c Specifies the interpretation of c h a r.

- C Enables nested comments.

GENERAL COMMAND LINE OPTIONS SUMMARY

- g [A] [0]

-K

Enables global type check.

Enables C++ comments.

MESSAGE CONTROL
- S Sets silent operation of compiler.

-w Disables warnings.

USER OPTIONS
-Dsymb

-Dsymb=xx

-Usymb

Displays C declarations.

Defines a symbol.

Defines a symbol.

Undefines a symbol.

GENERAL COMMAND LINE OPTIONS SUMMARY

2-4

GENERAL COMMAND
LINE OPTIONS

This chapter lists the C compiler command line options.

-a
Generates assembler source.

SYNTAX
-a file

DESCRIPTION
Use - a to generate assembler source on: f i l e . sxx.

By default the compiler does not generate an assembler source. The -a
option generates an assembler source to the named file.

The filename consists of a leafname optionally preceded by a pathname
and optionally followed by an extension. If no extension is given, the
target-specific assembler source extension is used.

The assembler source maybe assembled by the appropriate IAR
Assembler.

If the -1 or - L option is also used, the C source lines will be included in
the assembly source file as comments.

The -a and -A options may not be used together.

-A

-A
Generates assembler source.

SYNTAX
-kprefix

DESCRIPTION
Use -A to generate assembler source on: prefix source, sxx.

By default the compiler does not generate an assembler source . The -A
option generates an assembler source to a file with the same name as the
source leafhame but with the target-specific assembly source extension.

The -A option maybe followed by a prefix, which the compiler adds to
the filename. This allows the user to redirect the assembly source to a
different directory.

The assembler source may be assembled by the appropriate Micro-Series
assembler.

If the -1 or - L option is also used, the C source lines will be included in the
assembly source file as comments.

The - a and - A options may not be used together.

-b

-b
Makes object a library module.

SYNTAX
-b

DESCRIPTION
By default the object module is a program object module. Use the - b option
to make a library object module instead.

-c
Specifies the interpretation of char.

SYNTAX
-c

DESCRIPTION
The ANSI standard specifies that the interpretation ofcharasunsigned
c h a r o r s i g n e d c h a r i s implementation dependent.

By default, the IAR C Compiler treats char as equivalent tounsigned
char. Use - c to treat c h a r as equivalent to s i g n e d c h a r for compatibility
with other compilers.

Note that the C Library is compiled without - c, so if - c is used, the type
checking enabled by the - g or - r option may cause unexpected type
mismatch warnings from the linker.

-c

-c
Enables nested comments.

SYNTAX
-c

DESCRIPTION
By default, the compiler issues warnings on finding nested comments. Use
- C to inhibit these warnings, and allow comments to be nested to any level.
This is particularly useful for commenting-out program sections that
themselves contain comments.

-D
Defines a symbol.

SYNTAX
-Dsymb
-Dsymb=xx

DESCRIPTION
The - Dsymb option defines a symbol with the value 1 as if the line

#define symb 1

was included at the start of the source. It provides a mechanism for
command line control of the user's own compilation-time options, such as
configuration or custom debugging or trace routines. For simple Boolean
control variables, it is a more compact mechanism than the more flexible
- D symb=xx option.

2-8

The - Dsym/?=xx option defines a symbol with the specified value as if the
line

#define symb xx

was included at the start of the source.

To include spaces in the expression, surround the whole option by double
quotes. For example:

"-DEXPR=F + g"

is equivalent to:

#def ine EXPR F + g

To include a double quote character itself, follow it immediately by a
second double quote character. For example:

"-DSTRING=""micro proc

is equivalent to:

#def ine STRING "micro proc"

There is no limit on the number of -D options used on a single command
line.

Command lines can become very long when using the - D option, in which
case it maybe useful to use a command file; see -f.

-e

-e
Enables target dependent extensions.

SYNTAX
-e

DESCRIPTION
Use - e to enable extensions that are specific to the particular target. By
default these are not enabled.

These extensions are documented in the chapter Language extensions.

-f
Reads command line options from a file.

SYNTAX
-f file

DESCRIPTION
Extends the command line with file.xch

By default, the compiler looks for command parameters only on the
command line itself. To make long command lines more manageable, and
to avoid the MS-DOS command line length limit, -f maybe used to specify
a command file, from which the compiler reads command line items as if
they had been entered at the position of the - f option.

In the command file, the items are formatted exactly as if they were on the
command line itself, except that multiple lines may be used since the
newline character acts just as a space or tab character.

If no extension is included in the filename, .xcl is assumed.

2-10

-F

-F
Generates a formfeed after each listed function.

SYNTAX
-F

DESCRIPTION
Use - F to include a formfeed after each function in the listing.

-g
Enables global type check.

SYNTAX
- g [A] [0]

DESCRIPTION
There is a class of conditions in the source that indicate possible
programming faults but which by default the compiler and linker ignore.

The - g option causes the compiler to issue warning messages for these
conditions, and also to include type information in the object file so that
the linker will warn of them. The conditions are:

• Calls to undeclared functions.

• Undeclared K&R formal parameters.

• Missing return values in non-void functions.

• Unreferenced local or formal parameters.

• Unreferenced goto labels.

• Unreachable code.

-g

• Unmatching or varying parameters to K&R functions.

• #undef on unknown symbols.

• Valid but ambiguous initializers.

• Constant array indexing out of range.

This includes many of the conditions which on other C Compilers can be
detected only by using a separate l i n t utility.

The - g option does not increase the size of the final code but does increase
the compilation and (unless the 0 modifier is used) link times and object
module size.

The A modifier enables warnings of the old-style K&R functions.

The 0 modifier inhibits the inclusion of type information in the object
module, and hence inhibits type checking by the linker. Hence - gO does
not increase the object module size or link time.

Note that objects in modules compiled without type information (that is,
compiled without -g[A] or with -gO[A]) are considered as totally typeless
by the linker. This means that there will never be any warning of a type
mismatch from a declaration from a module compiled without type
information, even if the module with a corresponding declaration has been
compiled with type information.

EXAMPLES
The following examples illustrate each of these types of error.

Calls to undeclared functions
Program:

void my_fun(void) { }

i n t main(void)
{
my_func(); /* mis-spelt my_fun gives undeclared funct ion

warning */
return 0;

}

2-12

Error:

my_func() ; / * m i s - s p e l t my_fun gives undeclared f u n c t i o n warning * /
A

"undecfn.c",5 Warning[23]: Undeclared function 'my_func'; assumed "extern"

"int"

Undeclared K&R formal parameters
Program:

int my_fun(parameter) /* type of parameter not declared
*/

{
return parameter+1;

}

Error:

int my_fun(parameter) /* type of parameter not declared */

_ . . . A

" u n d e c f p . c " , 1 Warn ing [9] : Undeclared f u n c t i o n parameter ' pa rame te r ' ; assumed

" i n t "

Missing return values in non-void functions
Program:

i n t my_fun(void)
{
/* ... function body ... */

}

Error:

}
A

" n o r e t u r n . c " , 4 Warn ing[22] : Non-void f u n c t i o n : e x p l i c i t " r e t u r n "

<expression>; expected

Unreferenced local or formal parameters
Program:

void my_fun(int parameter) /* unreferenced formal
parameter */

-g

{
int localvar; /* unreferenced local variable */

/* exit without reference to either variable */
}

Error:

}

"unrefpar.c",6 Warning[33]: Local or formal ' loca lvar ' was never referenced

"unrefpar.c",6 Warning[33]: Local or formal 'parameter' was never referenced

Unreferenced goto labels
Program:

int main(void)
{

I* ... function body ... */

exit: /* unreferenced label */

return 0;
}

Error:

}
A

"unreflab.c",7 Warning[13]: Unreferenced label 'exit'

Unreachable code
Program:

#include <stdio.h>

int main(void)
{
goto exit;

putsC'This code is unreachable");

exit:

return 0;
}

2-14

Error:

putsCThis code is unreachable");

"unreach.c".7 Warning[20]: Unreachable statement(s)

Unmatching or varying parameters to K&R functions
Program:

i n t my_fun(len,str)
i n t len ;
char * s t r ;
{
s t r [0] = ' a ' ;
return len;

}

char buffer[99] ;
int main(void)
{
my_fun(buffer,99) ; /* wrong order of parameters */
my_fun(99) ; /* missing parameter */
return 0 ;

}

Error:

my_fun(buffer,99) ; /* wrong order of parameters */

"varyparm.c".14 Warning[26]: Inconsistent use of K&R function - changing

type of parameter

my_fun(buffer,99) ; /* wrong order of parameters */

"varyparm.c",14 Warning[26]: Inconsistent use of K&R function - changing

type of parameter

my_fun(99) ; /* missing parameter */

"varyparm.c",15 Warning[25]: Inconsistent use of K&R function - varying

number of parameters

-g

#undef on unknown symbols
Program:

#de f ine my_macro 99

/* M i sspe l t name gives a warning t ha t the symbol is unknown */
#undef my_macor

i n t ma in (vo id)

{
r e t u r n 0 ;

}

Error:

#undef my_macor

"hundef.c".4 Warrn'ng[2]: Macro 'my_macor' is already #undef

Valid but ambiguous initializers
Program:

typedef struct tl {int fl; int f2;} typel;
typel f5;} type2;
int f8;} type3;

typedef struct t2 {int f3; typel f4
typedef struct t3 {int f6; type2 f7
type3 example = {99, {42,1,2}, 37}

Error:

type3 example - {99, {42.1,2}. 37} ;

"ambigini.c",4 Warning[12]: Incompletely bracketed initializer

Constant array indexing out of range
Program:

char buffer[99] ;

int main(void)
{
buffer[500] = 'a' ; /* Constant index out of range */

return 0;
}

2-16

Error:

buffer[500] - 'a" ; /* Constant index out of range */
A

"arn'ndex.c",5 Warning[28]: Constant [index] outside array bounds

-G
Opens the standard input as source.

SYNTAX
-G

DESCRIPTION
By default, the source is read from the source file of the specified name.
Use - G to read the source directly from the standard input stream,
normally the keyboard. The source filename is set to s td i n. c.

-H
Sets the object module name.

SYNTAX
-Wname

DESCRIPTION
By default, the internal name of the object module is the source leafname.
If several modules have the same source leafname, the identical object
module names causes a duplicate modules error from the linker.

-1

This can arise, for example, when the source files are generated by a
compiler pre-processor.

Use - H to specify an alternative object module name, to overcome this
problem.

-1

Lists included files.

SYNTAX
-i

DESCRIPTION
Use the - i option to list #i ncl ude files. By default they are not listed.

-I
Adds an include file search prefix.

SYNTAX
-lprefix

DESCRIPTION
The compiler performs the following search sequence for each include file
enclosed in angle brackets in a directive such as:

#include <file>

• The filename prefixed by the argument of each successive -1 option if
any.

K

• The filename prefixed by each successive path in the C_ INCLUDE
environment variable if any.

• The filename alone.

In addition, if the filename is enclosed in double quotes, as in

#include "file"

the compiler first searches the filename prefixed by the source file path.

Use the -1 option, followed immediately by a path specification, to direct
the compiler to search for include files on that path.

There is no limit to the number of -1 options on a single command line.

Note that the compiler simply adds the -1 prefix onto the start of the
include filename, so it is important to include the final backslash if
necessary.

-K
Enables C++ comments.

SYNTAX
- K

DESCRIPTION
C++ style comments are introduced by // and extend to the end of the line.
By default, C++ style comments are not accepted. Use the - K option to
allow them to be accepted.

-1

-1
Generates a listing.

SYNTAX
-1 file

DESCRIPTION
By default, the compiler does not generate a listing. Use the -1 option to
generate a listing to the named file. The filename consists of a leafhame
optionally preceded by a pathname and optionally followed by an
extension. If no extension is given, . 1 st is used.

The -1 and - L options may not be used at the same time.

-L
Generates a listing.

SYNTAX
-Lprefix

DESCRIPTION
By default, the compiler does not generate a listing. The - L option
generates a listing to a file with the same name as the source leafhame but
with the extension .1s t .

The - L option may be followed by a prefix, which the compiler adds to the
filename. This allows the user to redirect the listing to a different
directory.

The -1 and - L options may not be used at the same time.

2-20

-o
Specifies object filename.

SYNTAX
-o file

DESCRIPTION
Without the - o option, the compiler stores the object code in a file whose
name is:

• The prefix specified by - 0.

• The leafname of the source.

• A target-specific object code extension.

The - o option sets an entire alternative filename consisting of an optional
pathname, obligatory leafname and optional extension. It allows the object
code to be directed to a different file.

The - o and - 0 options may not be used at the same time.

-o
Specifies object filename.

SYNTAX
-Oprefix

DESCRIPTION
By default the compiler stores the object code in a file whose name is the
leafname of the source plus a target-specific object code extension.

-p

Use - 0 to specify a prefix which the compiler adds to the leafhame,
allowing the object code to redirected to an alternative directory.

The -o and -0 options may not be used at the same time.

P
Formats listing into pages.

SYNTAX
-pn

DESCRIPTION
By default, the listing is not divided into pages. Use - p followed by the
number of lines per page in the range 10 to 150 to divide the listing into
pages of this size.

P
Generates PROMable code.

SYNTAX
- p

DESCRIPTION
By default, the compiler places initialized statically allocated objects in the
program memory segment, and hence if the program is placed in PROM,
the program cannot write to them.

2-22

-q

Use the - P option to make it possible for a PROMed program to write to
initialized statically allocated objects. - P causes the run-time system to
copy initialized statically allocated objects from PROM into RAM upon
start-up.

Note that - P is not required to enable writing to non-initialized statically
allocated objects. This is because the compiler assumes that statically
allocated objects that are not initialized will be written to, and hence
automatically places them in RAM.

-q
Puts mnemonics in the listing.

SYNTAX
-q

DESCRIPTION
By default the compiler does not include the generated assembly lines in
the compilation listing. Use - q to include assembly lines in the compilation
listing, as an aid to debugging. See also the options -a and -A.

-r
Generates debug information.

SYNTAX
- r [0 1 2] [i] [n]

-r

DESCRIPTION
By default, the object modules do not contain the additional information
required by C-SPY or other symbolic debuggers. Use - r to include this
additional information in the object code, so a debugger can be used on the
module.

For the option to use to suit C-SPY see the Using C-SPY guide.

The following table describes the effect of the modifiers:

Modifier What it means

0, 1, 2 Support different debugger hardware. For source code
debuggers this information should be specified in the
appropriate debugger manual. For debuggers that do not
support C source line display the default (0) is sufficient.

i #i n c 1 u d e file information will be added to the object file.
Note that this is usually of little interest unless include
files contain function definitions (not just declarations).
Also note that C statements in #i ncl ude files are
practically non-debuggable with debuggers other than
C-SPY. A side-effect is that source line records will
contain the global (= total) line count which can affect
source line displays in some debuggers.

n Suppresses the generation of C source lines in the object
file (which is only required by C-SPY and other debuggers
based on the IAR debug format).

For most other debuggers that do not include specific information on how
to use IAR C Compilers, - rn should be specified. Do not use - r without n
unless specifically required, since this increases the memory requirement
considerably.

2-24

-R

Note that global optimization activated by the - z or - s options may
invalidate source line information (due to statement combinations and
rearrangements performed by the compiler) and that this can affect source
code displays during program stepping. Also note that the - r option
generates slightly more target code and includes type information as if - g
had been used.

-R
Sets the code segment name.

SYNTAX
-Rname

DESCRIPTION
By default, the compiler places executable code in a segment named CODE,
which by default the linker places at a variable address. Use - R to place the
code in a specific segment with a unique name chosen by the user. This
then allows the user to specify to the linker a fixed address for this
particular segment.

-s
Optimizes for speed.

SYNTAX
-s [0-9]

2-25

-s

DESCRIPTION
The argument sets the level of optimization:

Value Level

0 No optimization.

1-3 Fully debuggable.

4-6 Some constructs not debuggable.

7-9 Full optimization.

-s
Sets silent operation of compiler.

SYNTAX
-s

DESCRIPTION
By default the compiler issues introductory messages and a final statistics
report. Use - S to inhibit these messages.

Note that error and warning messages are shown.

-t
Sets the tab spacing.

SYNTAX
-to

2-26

-T

DESCRIPTION
By default, the listing is formatted with a tab spacing of 8 characters. Use
-1 to set the spacing of the tab characters to between 2 and 9 characters
(default 8).

-T
Lists active lines only.

SYNTAX
-T

DESCRIPTION
By default, inactive source lines, such as those in false #i f structures, are
listed. Use -T to list active lines only.

-u
Undefmes a symbol.

SYNTAX
-\isymb

DESCRIPTION
- U symb is equivalent to:

#undef symb

file://-/isymb

-w

By default, the compiler has the following pre-defined symbols:

Symbol Value

_IAR_SYSTEMS_ICC

STDC

VER

_ T I D _

_ F I L E _

L INE

TIME

DATE

1

1

Compiler version number.

Target-IDENT.

Current source filename.

Current source line number.

Current time in h h: mm: s s format.

Current date in Mmm dd yyyy format.

The - U option can be used to switch off any of these symbols, to resolve a
conflict with any user-defined symbol of the same name.

-w
Disables warnings.

S Y N T A X
-w

D E S C R I P T I O N
By default, the compiler issues standard warning messages, and any
additional warning messages enabled with - g. Use - w to inhibit all
warning messages.

2-28

X

-X

Generates a cross-reference list.

SYNTAX
-x[D][F][T][2]

DESCRIPTION
By default the compiler does not include global symbols in the listing. The
- x option with no argument list adds a list of all global symbols and their
meanings at the end of the compilation listing. This includes all variable
objects and all referenced functions, #def i ne statements, enum statements,
and typedef statements.

To include additional information, follow -x by one or more of the
following:

Argument Information

D Unreferenced #d e f i n e symbols.

F Unreferenced function declarations.

T Unreferenced enum constants and typedef s.

2 Dual line spacing between symbol entries.

-X
Describes C declarations.

SYNTAX
-x

-y

DESCRIPTION
Use - X to display a readable description of all the C declarations in the file.

EXAMPLES
For the declaration:

void (* signaHint sig, void (* func) ())) (int);

the following output will be produced:

Identifier: signal
storage class: extern

prototyped non_banked function returning
xxx - non_banked code pointer to

prototyped non_banked function returning
xxx - void

and having following parameter(s):
storage class: auto
xxx - int

and having following parameter(s):
storage class: auto
xxx - int
storage class: auto
xxx - non_banked code pointer to

non_banked function returning
xxx - void

-y
Initializes strings as variables.

SYNTAX
-y

DESCRIPTION
By default C string literals are assumed to be read-only. Use -y to generate
strings as initialized variables. However, arrays initialized with strings
(ie char c [] = "string") are always treated as ordinary initialized
variables.

-z
Optimizes for size.

SYNTAX
- z [0 - 9]

DESCRIPTION
The argument sets the level of optimization:

Value Level

0 No optimization.

1-3 Fully debuggable.

4-6 Some constructs not debuggable.

7-9 Full optimization.

See the file GLOBAL. DOC for additional information.

-z

2-32

GENERAL C LANGUAGE
EXTENSIONS

INTRODUCTION
The IAR C Compiler supports a number of extensions to the C language.
The majority are specific to the target processor, and are therefore
documented in the chapter Language extensions. The remainder are
common to all targets and hence are documented here.

COMPILER VERSION
The macro VER returns an integer constant containing the compiler
version number in decimal format.

For example, for version 2.34E the value of VER is 234.

TARGET IDENTIFICATION
The macro TI D returns a long integer constant containing a target
identifier and related information:

31 16 15 14 87 43 0

(not used)
Intrinsic
support

Target_IDENT, unique
to each target processor

-v option value,
if supported

-m option value,
if supported

To find the value of Ta rget_I DENT for the current compiler, execute:

printf("%ld",(_TID_»8)&0x7F)

For an example of the use of TID , see the file s t d a r g . h.

GENERAL C LANGUAGE EXTENSIONS

ARGUMENT TYPE
_a rgt$ is a unary operator with the same syntax and argument as s i zeof.
It returns a normalized value describing the type of the argument:

Result Type

1 Unsigned char.

2 Char.

3 Unsigned short.

4 Short.

5 Unsigned int.

6 Int.

7 Unsigned long.

8 Long.

9 Float.

10 Double.

11 Long double.

12 Pointer/address.

13 Union.

14 Struct.

For an example of the use of _argt$, see the file stdarg. h.

2-34

GENERAL C LANGUAGE EXTENSIONS

FUNCTION PARAMETERS DESCRIPTION
_a rgs $ is a reserved word that returns a char array (char *) containing a
list of descriptions of the formal parameters of the current function:

Offset Contents

0 Parameter 1 type in _a rgt$ format.

1 Parameter 1 size in bytes.

2 Parameter 2 type in_a rg t$ format.

3 Parameter 2 size in bytes.

2 n - 2 Parameter n type in_a rg t$ format.

2n -1 Parameter n size in bytes.

2n \0

Sizes greater than 127 are reported as 127.

_a rgs $ may be used only inside function definitions. For an example of
the use of _args$, see the file s t d a r g . h.

$ CHARACTER
The character $ has been added to the set of valid characters in identifiers
for compatibility with DEC/VMS C.

USE OF SIZEOF AT COMPILE TIME
The ANSI-specified restriction that the si zeof operator cannot be used in
#i f and #el i f expressions has been eliminated.

2-35

GENERAL C LANGUAGE EXTENSIONS

2-36

GENERAL C LIBRARY
DEFINITIONS

INTRODUCTION
The ICC C Compiler package provides most of the important C library
definitions that apply to PROM-based embedded systems. These are of
three types:

• Standard C library definitions, for use in user programs. These are
documented in this chapter.

• CSTARTUP, the single program module containing the start-up code.

• Intrinsic functions, used only by the compiler, to perform low-level
operations which cannot be performed by in-line code. Intrinsic
functions have names beginning with ? to distinguish them from other
functions. Since they are not to be used in application programs, they
are not documented.

LIBRARY OBJECT FILES
For each combination of configuration and mode, there is a single library
object file containing all the library definitions. The linker includes only
those routines that are required (directly or indirectly) by the user's
program.

Most of the library definitions can be used without modification, that is,
directly from the library object files supplied. For many of these, the
source is optionally available. The remainder are I/O-oriented routines
(such asputchar and getchar) that you may need to customize for your
target application. For these, the source is supplied as part of the standard
installation.

The library object files are supplied having been compiled with the global
type check option on (-gA).

GENERAL C LIBRARY DEFINITIONS

HEADER FILES
The user program gains access to library definitions through header files,
which it incorporates using the #i ncl ude directive. To avoid wasting time
at compilation, the definitions are divided into a number of different
header files each covering a particular functional area, letting the user
include just those that are required.

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail
during execution, or generate error or warning messages at compile time
or link time.

LD3RARY DEFINITIONS SUMMARY
This section lists the header files and summarizes the functions included
in each. Header files may additionally contain target-specific definitions -
these are documented in the chapter Language extensions.

All library functions are concurrently reusable (reentrant) where stated.

CHARACTER HANDLING - ctype.h

Letter or digit equality.

Letter equality.

Control code equality.

Digit equality.

Printable non-space
character equality.

Lower case equality.

Printable character
equality.

Punctuation character
equality.

White-space character
equality.

2-38

isalnum int isalnum(int c)

isalpha int isalphad'nt c)

iscntrl int iscntrl(int c)

isdigit int isdigitd'nt c)

isgraph int isgraph(int c)

i s1 owe r int islower(int c)

isprint int isprint(int c)

ispunct int ispunct(int c)

isspace int isspace (int c)

GENERAL C LIBRARY DEFINITIONS

isupper in t isupper(int c)

i s xd ig i t i n t i s x d i g i t (i n t c)

tolower in t to lower(in t c)

toupper in t toupper(int c)

Upper case equality.

Hex digit equality.

Converts to lower case.

Converts to upper case.

LOW-LEVEL ROUTINES - icclbutl.h
_formatted_read

int _formatted_read (const
char **line, const char
**format, va_list ap)

_formatted_write

int_formatted_write (const
char* format, void outputf
(char, void *) , void
*sp. va_list ap)

_medium int _formatted_read (const
_read char **line, const char

**format, va_list ap)

jnedium int_formatted_write (const
_write char* format, void outputf

(char, void *) , void
*sp, va_list ap)

_small int _formatted_write (const
_write char* format, void outputf

(char, void *) , void
*sp, va_list ap)

Reads formatted data.

Formats and writes data.

Reads formatted data
excluding floating-point
numbers.

Writes formatted data
excluding floating-point
numbers.

Small formatted data
write routine.

MATHEMATICS - math.h
acos double acos(double arg)

asin double asin(double arg)

atan double atan(double arg)

Arc cosine.

Arc sine.

Arc tangent.

2-39

GENERAL C LIBRARY DEFINITIONS

atan2 double atan2(double argl,
double argZ)

ceil double ceil(double arg)

cos double cos(double arg)

cosh double cosh(double arg)

exp double exp(double arg)

fabs double fabs(double arg)

f l o o r double f l o o r (d o u b l e arg)

fmod double fmod(double argl,
double argZ)

f r e x p double f rexp (doub le argl,
i n t *argZ)

Idexp double IdexpCdouble argl,

i n t argZ)

l og double log(doub le arg)

log lO double log lO(doub le arg)

modf double modf(double value,
double *iptr)

pow double pow(double argl,

double argZ)

s in double s in (doub le arg)

s inh double s inh(doub le arg)

s q r t double sqrtCdouble arg)

tan double tan(doub le x)

tanh double tanh(double arg)

Arc tangent with
quadrant.

Smallest integer greater
than or equal to arg.

Cosine.

Hyperbolic cosine.

Exponential.

Double-precision
floating-point absolute.

Largest integer less than
or equal.

Floating-point
remainder.

Splits a floating-point
number into two parts.

Multiply by power of
two.

Natural logarithm.

Base-10 logarithm.

Fractional and integer
parts.

Raises to the power.

Sine.

Hyperbolic sine.

Square root.

Tangent.

Hyperbolic tangent.

2-40

GENERAL C LIBRARY DEFINITIONS

NON-LOCAL JUMPS - setjmp.h
longjmp void longjmp(jmp_buf env, Longjump.

i n t val)

setjmp in t setjmp(jmp_buf env) Setsjump.

VARIABLE ARGUMENTS - stdarg.h
va_arg type va_arg(va_list ap,

node)

va_end void va_end(va_l i s t ap)

va_l is t char * v a _ l i s t [l]

va_start void va_star t (va_l is t ap,
parmN)

Next argument in
function call.

Ends reading function
call arguments.

Argument list type.

Starts reading function
call arguments.

INPUT/OUTPUT - stdio.h
getchar i n t getchar(void) Gets character.

gets char *gets(char *s) Gets string.

p r i n t f i n t p r in t f (const char
*format, . . .)

Writes formatted data.

putchar i n t putchar(int value) Puts character.

puts i n t puts(const char *s) Puts string.

scanf i n t scanf(const char
* format, ...)

Reads formatted data.

sp r in t f i n t spr in t f (char *s, Writes formatted data to
const char * format,) a string.

sscanf i n t sscanf(const char *s, Reads formatted data
const char * format, ...) from a string.

2-41

GENERAL C LIBRARY DEFINITIONS

GENERAL UTILITIES - stdlib.h
abort void abort(void)

abs int abs(int j)

atof double atof(const char
*nptr)

atoi int atoi(const char *nptr)

atol long atoi(const char *nptr)

calloc void *calloc(size_t nelem,
size_t el size)

div div_t div(int numer,
int denom)

exit void exit(int status)

free void free(void *ptr)

labs long int labsdong int j)

Idiv ldiv_t ldivdong int numer,
long int denom)

malloc void *malloc(size_t size)

rand int rand(void)

realloc void *realloc(void *ptr,
size_t size)

srand void srand(unsigned int seed)

strtod double strtod(const char
*nptr, char **endptr)

strtol long int strtol(const char
*nptr, char **endptr,
int base)

Terminates the program
abnormally.

Absolute value.

Converts ASCII to
double.

Converts ASCII to in t .

Converts ASCII to 1 ong
in t .

Allocates memory for an
array of objects.

Divide.

Terminates the program.

Frees memory.

Long absolute.

Long division.

Allocates memory.

Random number.

Reallocates memory.

Sets random number
sequence.

Converts a string to
double.

Converts a string to a
long integer.

GENERAL C LIBRARY DEFINITIONS

s t r t o u l unsigned long i n t s t r t o u l
(const char *nptr, char
**endptr, base i n t)

Converts a string to an
unsigned long integer.

STRING

memchr

memcmp

memcpy

memmove

memset

s t r c a t

s t r c h r

strcmp

s t r c o l 1

s t r cpy

s t rcspn

s t r l e n

s t r n c a t

HANDLING - string.h
void *memchr(const vo id *s,
i n t c, s i z e _ t n)

i n t memcmp(const void *sl,
const void *s2, s i ze_ t n)

void *memcpy(void *sl,
const void *s2, s i ze_ t n)

void *memmove(void *sl,
const void *s2, s i ze_ t n)

void *memset(void *s,
i n t c, s i z e _ t n)

char * s t r c a t (c h a r *sl,
const char *s2)

char * s t r c h r (c o n s t char * s ,
i n t c)

i n t s t rcmp(const char *sl,
const char *s2)

i n t s t r c o l l (c o n s t char *sl,
const char *s2)

char * s t r cpy (cha r *sl,
const char *s2)

s ize_ t s t r cspn (cons t char
*sl, const char *s2)

Searches for a character
in memory.

Compares memory.

Copies memory.

Moves memory.

Sets memory.

Concatenates strings.

Searches for a character
in a string.

Compares two strings.

Compares strings.

Copies string.

Spans excluded
characters in string.

s ize_ t s t r l e n (c o n s t char * s) Stringlength.

char * s t r n c a t (c h a r *sl,
const char *s2, s i ze_ t n)

Concatenates a specified
number of characters
with a string.

2-43

GENERAL C LIBRARY DEFINITIONS

strncmp i n t strncmp(const char *sl, Compares a specified
const char *s2, s i z e_ t n) number of characters

with a string.

s t rncpy char *s t rncpy(char *sl, Copies a specified
const char *s2, s i z e _ t n) number of characters

from a string.

s t rpb rk char *s t rpbrk(cons t char Finds any one of
*sl, const char *s2) specified characters in a

string.

s t r r c h r char * s t r r c h r (c o n s t char *s, Finds character from
i n t c) right of string.

s t r spn s i ze_ t s t r spn(const char Spans characters in a
*sl, const char *s2) string.

s t r s t r char * s t r s t r (c o n s t char *sl. Searches for a substring.
const char *s2)

COMMON DEFINITIONS - stddef.h
No functions (various definitions including s i z e _ t , NULL, p t rd i f f_ t ,
offsetof , etc).

INTEGRAL TYPES - limits.h
No functions (various limits and sizes of integral types).

FLOATING-POINT TYPES - float.h
No functions (various limits and sizes of floating-point types).

ERRORS - e r rnch
No functions (various error return values).

ASSERT - assert.h
a s s e r t void a s s e r t d n t expression) Checks an expression.

2-44

C LIBRARY FUNCTIONS
REFERENCE

This section gives an alphabetical list of the C library functions, with a full
description of their operation, and the options available for each one.

The format of each function description is as follows:

Name

memchr
str ing.h — — -

Searches for a character in memory.

DECLARATION
void *memchr(const void *s. i n t c. s ize_t n)

P A R A M E T E R S

s A pointer to an object.

c An int representing a character.

n A value of type s i ze_t specifying the size of each object.

R E T U R N VALUE
Result Value

Successful A pointer to the first occurrence of c in the n characters
pointed to by s.

Unsuccessful Null.

DESCRIPTION
Searches for the first occurrence of a character in a pointed-to region of
memory of a given size.

Both the single character and the characters in the object are treated as
unsigned.

Header file

Description

Declaration

Parameters

Return
value

Full
description

C LIBRARY FUNCTIONS REFERENCE

NAME
The function name.

The function name is followed by the function header filename, and a brief
description of the function.

DECLARATION
The C library declaration.

PARAMETERS
Details of each parameter in the declaration.

RETURN VALUE
The value, if any, returned by the function.

DESCRIPTION
A detailed description covering the function's most general use. This
includes information about what the function is useful for, and a
discussion of any special conditions and common pitfalls.

abort

abort
s td l i b .h

Terminates the program abnormally.

DECLARATION
void abort(void)

PARAMETERS
None.

RETURN VALUE
None.

DESCRIPTION
Terminates the program abnormally and does not return to the caller. This
function calls the e x i t function, and by default the entry for this resides
in CSTARTUP.

2-47

abs

abs
s tdl ib .h

Absolute value.

DECLARATION
int abs(int j)

PARAMETERS
j An int value.

RETURN VALUE
An i nt having the absolute value of j.

DESCRIPTION
Computes the absolute value of j.

2-48

acos

acos
math.h

Arc cosine.

DECLARATION
double acos(double arg)

PARAMETERS
arg A double in the range [-1.+1].

R E T U R N VALUE
The doubl e arc cosine of arg, in the range [0, pi].

DESCRIPTION
Computes the principal value in radians of the arc cosine of arg.

2-49

asm

asin
math.h

Arc sine.

DECLARATION
double asin(double arg)

PARAMETERS
arg A double in the range [-1.+1].

RETURN VALUE
The doubl e arc sine of arg, in the range [-pi /2 ,+pi / 2] .

DESCRIPTION
Computes the principal value in radians of the arc sine of arg.

assert
assert.h

Checks an expression.

DECLARATION
void assert (i n t expression)

PARAMETERS
express i on An expression to be checked.

RETURN VALUE
None.

DESCRIPTION
This is a macro that checks an expression. If it is false it prints a message
to s t d e r r and calls abort .

The message has the following format:

Fi le name; l i ne num # Assertion fa i l u re "expression"

To ignore a s s e r t calls put a#defineNDEBUG statement before the
#incl ude <asser t .h> statement.

atan

atan
math.h

Arc tangent.

DECLARATION
double atan(double arg)

P A R A M E T E R S
arg A double value.

R E T U R N VALUE
The doublearctangentof arg, in the range [-pi /2 ,p i /2] .

DESCRIPTION
Computes the arc tangent of arg.

2-52

atan2
math.h

Arc tangent with quadrant.

DECLARATION
double atan2(double argl, double argZ)

PARAMETERS
argl A double value.

arg2 A doubl e value.

RETURN VALUE
The doubl e arc tangent of argl/argZ, in the range [-p i , pi].

DESCRIPTION
Computes the arc tangent of argl/arg2, using the signs of both arguments
to determine the quadrant of the return value.

atof

atof
s td l ib .h

Converts ASCII to doubl e.

DECLARATION
double atof(const char *nptr)

PARAMETERS
nptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The double number found in the string.

DESCRIPTION
Converts the string pointed to by nptr to a double-precision floating-point
number, skipping white space and terminating upon reaching any
unrecognized character.

EXAMPLES

" -3K" gives -3.00

".0006" gives 0.0006

" l e - 4 " gives 0.0001

atoi

atoi
s td l i b .h

Converts ASCII to i nt.

DECLARATION
i n t atoi(const char *nptr)

PARAMETERS
nptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The i nt number found in the string.

DESCRIPTION
Converts the ASCII string pointed to by nptr to an integer, skipping white
space and terminating upon reaching any unrecognized character.

EXAMPLES

" -3K"gives-3

"6" gives 6

"149" gives 149

2-55

atol

atol
s td l i b . h

Converts ASCII to 1 ong i nt.

DECLARATION
long atol (const char *nptr)

PARAMETERS
nptr A pointer to a string containing a number in ASCII form.

RETURN VALUE
The 1 ong number found in the string.

DESCRIPTION
Converts the number found in the ASCII string pointed to by nptr to a
long integer value, skipping white space and terminating upon reaching
any unrecognized character.

EXAMPLES
" -3K"gives-3

"6" gives 6

"149" gives 149

2-56

calloc

calloc
s td l i b .h

Allocates memory for an array of objects.

DECLARATION
void *cal1oc(size_t nelem, size_t elsize)

PARAMETERS
nelem The number of objects.

elsize A value of type s i ze_t specifying the size of each object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Zero if there is no memory block of the required size or
greater available.

DESCRIPTION
Allocates a memory block for an array of objects of the given size. To
ensure portability, the size is not given in absolute units of memory such
as bytes, but in terms of a size or sizes returned by the s i zeof function.

The availability of memory depends on the default heap size.

2-57

ceil

ceil
math.h

Smallest integer greater than or equal to arg.

DECLARATION
double ceil(double arg)

PARAMETERS
arg A double value.

RETURN VALUE
A doubl e having the smallest integral value greater than or equal to arg.

DESCRIPTION
Computes the smallest integral value greater than or equal to arg.

2-58

COS

C O S

math.h

Cosine.

D E C L A R A T I O N
double cos(double arg)

P A R A M E T E R S
arg A doubl e value in radians.

R E T U R N VALUE
The doubl e cosine of arg.

D E S C R I P T I O N
Computes the cosine of arg radians.

2-59

cosh

cosh
math.h

Hyperbolic cosine.

DECLARATION
double cosh(double arg)

P A R A M E T E R S
arg Adouble value in radians.

R E T U R N VALUE
The doubl e hyperbolic cosine of arg.

DESCRIPTION
Computes the hyperbolic cosine of arg radians.

2-60

div

div
stdl ib.h

Divide.

D E C L A R A T I O N
div_t div(int numer, int denom)

P A R A M E T E R S
numer The i nt numerator.

demon The int denominator.

R E T U R N VALUE
A structure of type di v_t holding the quotient and remainder results of
the division.

D E S C R I P T I O N
Divides the numerator numerhy the denominator denom. The type di v_t
is defined in stdlib.h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quot * denom + rem = numer

exit

exit
s td l i b . h

Terminates the program.

DECLARATION
void e x i t d n t status)

PARAMETERS
status An i nt status value.

RETURN VALUE
None.

DESCRIPTION
Terminate the program normally. This function does not return to the
caller. This function entry resides by default in CSTARTUP.

2-62

exp

exp
math.h

Exponential.

D E C L A R A T I O N
double exp(double arg)

P A R A M E T E R S
arg A double value.

R E T U R N VALUE
A doubl e with the value of the exponential function of arg.

D E S C R I P T I O N
Computes the exponential function of arg.

2-63

fabs

fabs
math.h

Double-precision floating-point absolute.

DECLARATION
double fabs(double arg)

P A R A M E T E R S
arg A doubl e value.

R E T U R N VALUE
The double absolute value of arg.

DESCRIPTION
Computes the absolute value of the floating-point number a rg.

2-64

floor

floor
math.h

Largest integer less than or equal.

DECLARATION
double f loor(double arg)

PARAMETERS
arg A double value.

RETURN VALUE
A doub 1 e with the value of the largest integer less than or equal to arg.

DESCRIPTION
Computes the largest integral value less than or equal to a rg.

2-65

fmod

fitnod
math.h

Floating-point remainder.

DECLARATION
double fmod(double argl, double arg2)

PARAMETERS
argl The doubl e numerator.

arg2 The doubl e denominator.

RETURN VALUE
The doubl e remainder of the division argl/arg2.

DESCRIPTION
Computes the remainder of argl/arg2, ie the value argl - i*arg2, for
some integer i such that, if a rg2 is non-zero, the result has the same sign
as argl and magnitude less than the magnitude of arg2.

2-66

free
s t d l i b . h

Frees memory.

DECLARATION
void free(void *ptr)

PARAMETERS
ptr A pointer to a memory block previously allocated by

mal 1 oc, cal 1 oc, or real 1 oc.

RETURN VALUE
None.

DESCRIPTION
Frees the memory used by the object pointed to by ptr. ptr must earlier
have been assigned a value from mal 1 oc, cal 1 oc, or real 1 oc.

firexp

frexp
math.h

Splits a floating-point number into two parts.

DECLARATION
double frexp(double argl, i n t *arg2)

PARAMETERS
a rgl Floating-point number to be split.

arg2 Pointer to an integer to contain the exponent of argl.

RETURN VALUE
The double mantissa of argl, in the range 0.5 to 1.0.

DESCRIPTION
Splits the floating-point number argl into an exponent stored in *arg2,
and a mantissa which is returned as the value of the function.

The values are as follows:

mantissa * 2exP°nent = value

2-68

getchar

getchar
s t d i o . h

Gets character.

DECLARATION
i n t getchar(void)

PARAMETERS
None.

RETURN VALUE
An i nt with the ASCII value of the next character from the standard input
stream.

DESCRIPTION
Gets the next character from the standard input stream.

The user must customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
ge t cha r . c .

2-69

gets

gets
stdio.h

Gets string.

DECLARATION
char *gets(char *s)

P A R A M E T E R S
s A pointer to the string that is to receive the input.

R E T U R N VALUE
Result Value

Successful A pointer equal to 5.

Unsuccessful Null.

DESCRIPTION
Gets the next string from standard input and places it in the string pointed
to. The string is terminated by end of line or end of file. The end-of-line
character is replaced by zero.

This function calls getchar, which must be adapted for the particular
target hardware configuration.

2-70

isalnum

isalnum
ctype.h

Letter or digit equality.

DECLARATION
i n t isalnumCint c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if cis a letter or digit, else zero.

DESCRIPTION
Tests whether a character is a letter or digit.

2-71

isalpha

isalpha
ctype.h

Letter equality.

DECLARATION
i n t i sa lphadn t c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if cis letter, else zero.

DESCRIPTION
Tests whether a character is a letter.

2-72

iscntrl

iscntrl
ctype.h

Control code equality.

DECLARATION
i n t i s c n t r l (i n t c)

PARAMETERS
c An i n t representing a character.

RETURN VALUE
An i nt which is non-zero if c is a control code, else zero.

DESCRIPTION
Tests whether a character is a control character.

2-73

isdigit

isdigit
ctype.h

Digit equality.

DECLARATION
int i sd ig i t (in t c)

PARAMETERS
c An int representing a character.

RETURN VALUE
An i nt which is non-zero if cis a digit, else zero.

DESCRIPTION
Tests whether a character is a decimal digit.

2-74

isgraph

isgraph
ctype.h

Printable non-space character equality.

DECLARATION
i n t isgraph(int c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if c is a printable character other than space,
else zero.

DESCRIPTION
Tests whether a character is a printable character other than space.

2-75

islower

islower
ctype.h

Lower case equality.

DECLARATION
int islowerdnt c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if cis lower case, else zero.

DESCRIPTION
Tests whether a character is a lower case letter.

2-76

isprint

isprint
ctype.h

Printable character equality.

DECLARATION
i n t i s p r i n t d n t c)

PARAMETERS
c An int representing a character.

RETURN VALUE
An i nt which is non-zero if cis a printable character, including space, else
zero.

D E S C R I P T I O N
Tests whether a character is a printable character, including space.

2-77

ispunct

ispunct
ctype.h

Punctuation character equality.

DECLARATION
i n t ispunctCint c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if cis printable character other than space, digit,
or letter, else zero.

DESCRIPTION
Tests whether a character is a printable character other than space, digit,
or letter.

2-78

isspace

isspace
c type.h

White-space character equality.

DECLARATION
i n t isspace (i n t c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if c is a white-space character, else zero.

DESCRIPTION
Tests whether a character is a white-space character, that is, one of the
following:

Character Symbol

Space ' '

Formfeed \ f

New l i n e \n

Carr iage r e t u r n \ r

Hor i zon ta l tab \ t

V e r t i c a l tab \v

lsupper

lsupper
ctype.h

Upper case equality.

DECLARATION
int isupperdnt c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if cis upper case, else zero.

DESCRIPTION
Tests whether a character is an upper case letter.

isxdigit

isxdigit
ctype.h

Hex digit equality.

DECLARATION
int isxdigitO'nt c)

PARAMETERS
c An i nt representing a character.

RETURN VALUE
An i nt which is non-zero if c is a digit in upper or lower case, else zero.

DESCRIPTION
Test whether the character is a hexadecimal digit in upper or lower case,
that is, one of 0-9, a-f, or A-F.

2-81

labs

labs
s tdl ib .h

Long absolute.

DECLARATION
long i n t labs(long i n t j)

P A R A M E T E R S
j A long int value.

R E T U R N VALUE
The 1 ong int absolute value of j.

DESCRIPTION
Computes the absolute value of the long integer j.

2-82

ldexp
math.h

Multiply by power of two.

DECLARATION
double ldexp(double argl,int arg2)

PARAMETERS
argl The doubl e multiplier value.

arg2 The i nt power value.

RETURN VALUE
The double value of argl multiplied by two raised to the power of arg2.

DESCRIPTION
Computes the value of the floating-point number multiplied by 2 raised to
a power.

ldiv

ldiv
s td l ib .h

Long division

DECLARATION
l d i v_ t Id i vdong i n t numer, long i n t denom)

PARAMETERS
numer The long int numerator.

denom The 1 ong int denominator.

RETURN VALUE
Ast ruc tof type 1 d i v_t holding the quotient and remainder of the
division.

DESCRIPTION
Divides the numerator numer by the denominator denom. The type 1 di v_t
is defined in std 1 i b. h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quot * denom + rem = numer

log
math.h

Natural logarithm.

DECLARATION
double log(double arg)

P A R A M E T E R S
arg A double value.

R E T U R N VALUE
The double natural logarithm of arg.

DESCRIPTION
Computes the natural logarithm of a number.

2-85

loglO

loglO
math.h

Base-10 logarithm.

DECLARATION
double loglOCdouble arg)

P A R A M E T E R S
arg A doubl e number.

R E T U R N VALUE
The double base-10 logarithm of arg.

DESCRIPTION
Computes the base-10 logarithm of a number.

2-86

longjmp

longjmp
set jmp.h

Long jump.

DECLARATION
vo id longjmp(jmp_buf env, i n t val)

PARAMETERS
env A struct of type jmp_buf holding the environment, set

by set jmp.

va 1 The i n t value to be returned by the corresponding
setjmp.

RETURN VALUE
None.

DESCRIPTION
Restores the environment previously saved by setjmp. This causes
program execution to continue as a return from the corresponding setjmp,
returning the value va 7.

2-87

malloc

malloc
stdl ib.h

Allocates memory.

DECLARATION
void *mal loc(size_t size)

PARAMETERS
size A s i ze_t object specifying the size of the object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest byte address) of the memory
block.

Unsuccessful Zero, if there is no memory block of the required size or
greater available.

DESCRIPTION
Allocates a memory block for an object of the specified size.

The availability of memory depends on the default heap size.

2-88

memchr

memchr
st r ing.h

Searches for a character in memory.

DECLARATION
void *memchr(const void *s, i n t c, size_t n)

PARAMETERS
s A pointer to an object.

c An i nt representing a character.

n A value of type s i ze_t specifying the size of each object.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence of c in the n characters
pointed to by s.

Unsuccessful Null.

DESCRIPTION
Searches for the first occurrence of a character in a pointed-to region of
memory of a given size.

Both the single character and the characters in the object are treated as
unsigned.

2-89

memcmp

memcmp
s t r i n g . h

Compares memory.

DECLARATION
i n t memcmpCconst void *sl, const void *s2, size_t n)

PARAMETERS
si A pointer to the first object.

s2 A pointer to the second object.

n A value of type s i ze_t specifying the size of each object.

RETURN VALUE
An integer indicating the result of comparison of the first n characters of
the object pointed to by si with the first n characters of the object pointed
to by s2:

Return value Meaning

>0 s i < s2

=0 s i = s2

<0 s i < s2

DESCRIPTION
Compares the first n characters of two objects.

2-90

memcpy

memcpy
s t r i n g . h

Copies memory.

DECLARATION
void *memcpy(void *sl, const vo id *s2, s i ze_ t n)

PARAMETERS

si A pointer to the destination object.

s2 A pointer to the source object.

n The number of characters to be copied.

RETURN VALUE
si.

DESCRIPTION
Copies a specified number of characters from a source object to a
destination object.

If the objects overlap, the result is undefined, so memmove should be used
instead.

menunove

memmove
s t r i n g . h

Moves memory.

DECLARATION
void *memmove(void *sl, const void *s2, s i z e _ t n)

P A R A M E T E R S

si A pointer to the destination object.

s2 A pointer to the source object.

n The number of characters to be copied.

R E T U R N V A L U E
si.

D E S C R I P T I O N
Copies a specified number of characters from a source object to a
destination object.

Copying takes place as if the source characters are first copied into a
temporary array that does not overlap either object, and then the
characters from the temporary array are copied into the destination object.

2-92

memset
s t r i n g . h

Sets memory.

DECLARATION
void *memset(void *s, i n t c, size_t n)

PARAMETERS
s A pointer to the destination object.

c An i nt representing a character.

n The size of the object.

RETURN VALUE
s.

DESCRIPTION
Copies a character (converted to an unsi gned char) into each of the first
specified number of characters of the destination object.

modf

modf
math.h

Fractional and integer parts.

DECLARATION
double modf(double value, double *iptr)

PARAMETERS
value A double value.

iptr A pointer to the double that is to receive the integral part
of value.

RETURN VALUE
The fractional part of va 1 ue.

DESCRIPTION
Computes the fractional and integer parts of value. The sign of both parts
is the same as the sign of va 1 ue.

2-94

pow

pow
math.h

Raises to the power.

DECLARATION
double pow(double argl, double argZ)

PARAMETERS
argl The double number.

argZ The doubl e power.

R E T U R N VALUE
argl raised to the power of arg2.

DESCRIPTION
Computes a number raised to a power.

2-95

printf

printf
std io .h

Writes formatted data.

DECLARATION
int printf(const char *format, _.)

PARAMETERS
format A pointer to the format string.

The optional values that are to be printed under the
control of format.

RETURN VALUE
Result Value

Successful The number of characters written.

Unsuccessful A negative value, if an error occurred.

DESCRIPTION
Writes formatted data to the standard output stream, returning the
number of characters written or a negative value if an error occurred.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

forma t is a string consisting of a sequence of characters to be printed and
conversion specifications. Each conversion specification causes the next
successive argument following the forma t string to be evaluated,
converted, and written.

2-96

printf

The form of a conversion specification is as follows:

% [f7ags] [field_width~\ [.precis ion] [length_modifieri
conversion

Items inside [] are optional.

Flags
The f lags are as follows:

Flog Effect

Left adjusted field.

+ Signed values will always begin with plus or minus sign.

space Values will always begin with minus or space.

Alternate form:

specifier effect

octa 1 First digit will always be a zero.

G g Decimal point printed and trailing zeros

kept.

E e f Decimal point printed.

X Non-zero values prefixed with OX.

x Non-zero values prefixed with 0 X.

0 Zero padding to field width (for d, i, o, u, x, X, e, E, f, g,
and G specifiers).

Field width
The f i el d_wi dth is the number of characters to be printed in the field.
The field will be padded with space if needed. A negative value indicates a
left-adjusted field. A field width of * stands for the value of the next
successive argument, which should be an integer.

Precision
The p rec i s ion i s the number of digits to print for integers (d, i, o, u, x,
and X), the number of decimals printed for floating-point values (e, E, and
f), and the number of significant digits for g and G conversions. A field

2-97

printf

width of * stands for the value of the next successive argument, which
should be an integer.

Length modifier
The effect of each 7 ength_modi tier is as follows:

Lengih_modifier Use

h before d, i, u, x, X, or o specifiers to denote a short
int or unsigned short int value.

1 before d, i, u, x, X, or o specifiers to denote a long
integer or unsigned long value.

L before e, E, f, g, or G specifiers to denote a long
double value.

Conversion
The result of each value of con vers i on is as follows:

Conversion Result

d Signed decimal value.

i Signed decimal value.

o Unsigned octal value.

u Unsigned decimal value.

x Unsigned hexadecimal value, using lower case (0-9, a-f) .

X Unsigned hexadecimal value, using upper case (0-9, A-F).

e Double value in the style [-]d.ddde+dd.

E Double value in the style [-] d. d d d E+d d.

f Double value in the style [-]ddd.ddd.

g Double value in the style of f or e, whichever is the more
appropriate.

G Double value in the style of F or E, whichever is the more
appropriate.

printf

Conversion Result

C Single character constant.

s String constant.

p Pointer value (address).

n No output, but store the number of characters written so
far in the integer pointed to by the next argument.

% % character.

Note that promotion rules convert all c h a r and shor t i n t arguments to
i nt while f 1 oats are converted to doubl e.

pri ntf calls the library function put char, which must be adapted for the
target hardware configuration.

The source of pri ntf is provided in the file pri n t f . c. The source of a
reduced version that uses less program space and stack is provided in the
file intwri .c.

EXAMPLES
After the following C statements:

int i=6, j=-6;
char *p = "ABC";
long 1=100000;
float fl = 0.0000001;
f2 - 750000;
double d - 2.2;

the effect of different pri ntf function calls is shown in the following
table; A represents space:

2-99

printf

Statement Output Number of characters
output

p r i n t f (" % c " , p [l]) B 1

p r i n t f (" % d " , i) 6 1

p r i n t f C % 3 d " , i) AA6 3

p r i n t f (" % . 3 d " , i) 006 3

p r i n t f (" % - 1 0 . 3 d " , i) OOfiAAAAAAA 10

p r i n t f (" % 1 0 . 3 d " , i) AAAAAAAOOfi 10

p r i n t f (" V a l u e = % + 3 d " , i) Value=A+6 9

p r i n t f (" % 1 0 . * d " , i , j) AAA-000006 10

p r i n t f (" S t r i n g = [% s] " , p) Str ing=[ABC] 12

p r i n t f (" V a l u e = % l X " , l) Value=186A0 11

p r i n t f (" % f " , f l) 0.000000 8

p r i n t f (" % f " , f 2) 750000.000000 13

p r i n t f (" % e " , f l) 1.000000e-07 12

p r i n t f (" % 1 6 e " , d) AAAA?.?nnnnnP+nn 16

p r i n t f (" % . 4 e " , d) 2.2000e+00 10

p r i n t f (" % g " , f l) le-07 5

p r i n t f (" * g " , f 2) 750000 6

p r i n t f (" % g " , d) 2.2 3

2-100

putchar

putchar
s t d i o . h

Puts character.

DECLARATION
i n t putcharCint value)

PARAMETERS
va 1 ue The i nt representing the character to be put.

RETURN VALUE
Result Value

Successful value.

Unsuccessful The EOF macro.

DESCRIPTION
Writes a character to standard output.

The user must customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
pu tchar . c .

This function is called by pri ntf.

2-101

puts

puts
stdio.h

Puts string.

DECLARATION
i n t putsCconst char *s)

PARAMETERS
s A pointer to the string to be put.

RETURN VALUE
Result Value

Successful A non-negative value.

Unsuccessful -1 if an error occurred.

DESCRIPTION
Writes a string followed by a new-line character to the standard output
stream.

2-102

rand
s tdl ib .h

Random number.

DECLARATION
int rand(void)

PARAMETERS
None.

R E T U R N VALUE
The next i nt in the random number sequence.

DESCRIPTION
Computes the next in the current sequence of pseudo-random integers,
converted to lie in the range [0, RAND_MAX].

See s rand for a description of how to seed the pseudo-random sequence.

realloc

realloc
s t d l i b . h

Reallocates memory.

DECLARATION
void * rea l loc(vo id *ptr, size_t size)

PARAMETERS
ptr A pointer to the start of the memory block.

size A value of type s i ze_t specifying the size of the object.

RETURN VALUE
Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Null, if no memory block of the required size or greater
was available.

DESCRIPTION
Changes the size of a memory block (which must be allocated by ma 11 oc,
ca l loc , or r ea l l oc) .

2-104

scanf

scanf
std io .h

Reads formatted data.

DECLARATION
i n t scanf(const char *format, ...)

PARAMETERS
format A pointer to a format string.

Optional pointers to the variables that are to receive
values.

RETURN VALUE
Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION
Reads formatted data from standard input.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

format is a string consisting of a sequence of ordinary characters and
conversion specifications. Each ordinary character reads a matching
character from the input. Each conversion specification accepts input
meeting the specification, converts it, and assigns it to the object pointed to
by the next successive argument following format.

If the format string contains white-space characters, input is scanned until
a non-white-space character is found.

2-205

scanf

The form of a conversion specification is as follows:

% [assign_suppress] [field_width] [length_modifier]
conversion

Items inside [] are optional.

Assign suppress
If a * is included in this position, the field is scanned but no assignment is
carried out.

field_width
The f i el d_wi dth is the maximum field to be scanned. The default is until
no match occurs.

length_modifier
The effect of each length_modifier is as follows:

Length modifier Before Meaning

1 d, i, or n 1 ong i nt as opposed to i nt.

o, u, or x uns i gned 1 ong i nt as opposed to
unsigned in t .

e, E, g, G, or f doubl e operand as opposed to
f loa t .

h d, i . o rn shor t i n t as opposed to in t .

o, u, or x unsigned shor t i n t as opposed to
unsigned in t .

L e, E, g, G, or f long doubl e operand as opposed to
f loa t .

2-106

scanf

Conversion
The meaning of each conversion is as follows:

Conversion Meaning

d Optionally signed decimal integer value.

i Optionally signed integer value in standard C notation,
that is, is decimal, octal (On) or hexadecimal (Oxn, OXn).

o Optionally signed octal integer.

u Unsigned decimal integer.

x Optionally signed hexadecimal integer.

X Optionally signed hexadecimal integer (equivalent to x).

f Floating-point constant.

e E g G Floating-point constant (equivalent to f).

s Character string.

c Oneor f ie ld_wid th characters.

n No read, but store number of characters read so far in the
integer pointed to by the next argument.

p Pointer value (address).

[Any number of characters matching any of the characters
before the terminating]. For example, [abc] means a, b,
or c.

[] Any number of characters matching] or any of the
characters before the further, terminating]. For example,
[]abc] means], a, b, or c.

[A Any number of characters not matching any of the
characters before the terminating]. For example, [Aabc]
means not a, b, or c.

scanf

Conversion Meaning

[A] Any number of characters not matching] or any of the
characters before the further, terminating]. For example,
[A]abc] means not], a, b, or c.

% % character.

In all conversions except c, n, and all varieties of [, leading white-space
characters are skipped.

scanf indirectly calls get char, which must be adapted for the actual
target hardware configuration.

EXAMPLES
For example, after the following program:

i n t n, i ;
char name[50];
float x;
n = scanf("%d%f%s", &i, &x, name)

This input line:

25 54.32E-1 He l lo World

will set the variables as follows:

n - 3, i = 25, x = 5.432, name="Hello World"

and this function:

scanf("%2d%f%*d %[0123456789]". &i, &x, name)

with this input line:

56789 0123 56a72

will set the variables as follows:

i = 56, x = 789.0 , name="56" (0123 unassigned)

2-108

setjmp

setjmp
setjmp.h

Sets jump.

DECLARATION
i n t setjmp(jmp_buf env)

PARAMETERS
env An object of type jmp_buf into which setjmp is to store

the environment.

RETURN VALUE
Zero.

Execution of a corresponding 1 ongjmp causes execution to continue as if it
was a return from setjmp, in which case the value of the i nt value given
in the 1 ongjmp is returned.

DESCRIPTION
Saves the environment in en v for later use by 1 o n g j mp.

Note that setjmp must always be used in the same function or at a higher
nesting level than the corresponding call to 1 ongjmp.

2-109

sin

sin
math.h

Sine.

DECLARATION
double sin(double arg)

PARAMETERS
arg Adouble value in radians.

R E T U R N VALUE
The doubl e sine of arg.

DESCRIPTION
Computes the sine of a number.

2-110

sinli

sinh
math.h

Hyperbolic sine.

DECLARATION
double sinh(double arg)

PARAMETERS
arg A doubl e value in radians.

RETURN VALUE
The doubl e hyperbolic sine of arg.

DESCRIPTION
Computes the hyperbolic sine of arg radians.

2-111

sprintf

sprintf
std io .h

Writes formatted data to a string.

DECLARATION
i n t sp r i n t f (char *s, const char *format, _.)

PARAMETERS
s A pointer to the string that is to receive the formatted

data.

forma t A pointer to the format string.

The optional values that are to be printed under the
control of format.

RETURN VALUE
Result Value

Successful The number of characters written.

Unsuccessful A negative value if an error occurred.

DESCRIPTION
Operates exactly as pri ntf except the output is directed to a string. See
pr i n t f for details.

s p r i n t f does not use the function putcha r, and therefore can be used
even i fpu t cha r i s not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

2-112

sqrt

sqrt
math.h

Square root.

DECLARATION
double sqrt(double arg)

PARAMETERS
arg A double value.

RETURN VALUE
The double square root of arg.

DESCRIPTION
Computes the square root of a number.

2-113

srand

srand
s t d l i b . h

Sets random number sequence.

DECLARATION
void srand(unsigned i n t seed)

PARAMETERS
seed An uns i gned i nt value identifying the particular random

number sequence.

RETURN VALUE
None.

DESCRIPTION
Selects a repeatable sequence of pseudo-random numbers.

The function rand is used to get successive random numbers from the
sequence. If rand is called before any calls to srand have been made, the
sequence generated is that which is generated after s rand (1).

2-114

sscanf

sscanf
s td io .h

Reads formatted data from a string.

DECLARATION
i n t sscanf(const char *s, const char *format, „.)

PARAMETERS
s A pointer to the string containing the data.

forma t A pointer to a format string.

Optional pointers to the variables that are to receive
values.

RETURN VALUE
Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION
Operates exactly as scanf except the input is taken from the string s. See
scanf, for details.

The function sscanf does not use getcha r, and so can be used even when
g e t c h a r i s not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

2-115

strcat

strcat
s t r i n g . h

Concatenates strings.

DECLARATION
char *st rcat(char *sl, const char *s2)

PARAMETERS
si A pointer to the first string.

s2 A pointer to the second string.

RETURN VALUE
s i .

DESCRIPTION
Appends a copy of the second string to the end of the first string. The
initial character of the second string overwrites the terminating null
character of the first string.

strchr

strchr
st r ing.h

Searches for a character in a string.

DECLARATION
char *strchr(const char *s, i n t c)

PARAMETERS
c An i nt representation of a character.

s A pointer to a string.

RETURN VALUE
If successful, a pointer to the first occurrence of c (converted to a char) in
the string pointed to by s.

If unsuccessful due to c not being found, null.

DESCRIPTION
Finds the first occurrence of a character (converted to a char) in a string.
The terminating null character is considered to be part of the string.

2-117

strcmp

strcmp
s t r ing .h

Compares two strings.

DECLARATION
i n t strcmp(const char *sl, const char *s2)

PARAMETERS
si A pointer to the first string.

s2 A pointer to the second string.

RETURN VALUE
The i nt result of comparing the two strings:

Return value Meaning

>0 s i < s2

=0 s i = s2

<0 s i < s2

DESCRIPTION
Compares the two strings.

2-118

strcoll

strcoll
s t r i n g . h

Compares strings.

DECLARATION
i n t strcol1(const char *sl, const char *s2)

PARAMETERS
si A pointer to the first string.

s2 A pointer to the second string.

RETURN VALUE
The i nt result of comparing the two strings:

Return value Meaning

>0 s i < s2

=0 s i = s2

<0 s i < s2

DESCRIPTION
Compares the two strings. This function operates identically to strcmp
and is provided for compatibility only.

2-119

strcpy

strcpy
s t r ing .h

Copies string.

DECLARATION
char *strcpy(char *sl, const char *s2)

PARAMETERS
si A pointer to the destination object.

s2 A pointer to the source string.

RETURN VALUE
s i .

DESCRIPTION
Copies a string into an object.

2-120

strcspn

strcspn
s t r ing .h

Spans excluded characters in string.

DECLARATION
size_t strcspn(const char *sl, const char *s2)

PARAMETERS
si A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE
The i nt length of the maximum initial segment of the string pointed to by
si that consists entirely of characters not from the string pointed to by s2.

DESCRIPTION
Finds the maximum initial segment of a subject string that consists
entirely of characters not from an object string.

2-121

str len

strlen
str ing.h

String length.

DECLARATION
size_t str len(const char *s)

PARAMETERS
s A pointer to a string.

RETURN VALUE
An object of type s i ze_t indicating the length of the string.

DESCRIPTION
Finds the number of characters in a string, not including the terminating
null character.

2-122

strncat

strncat
s t r ing .h

Concatenates a specified number of characters with a string.

DECLARATION
char *strncat(char *sl, const char *s2, size_t n)

PARAMETERS

si A pointer to the destination string.

s2 A pointer to the source string.

n The number of characters of the source string to use.

RETURN VALUE
si

DESCRIPTION
Appends not more than n initial characters from the source string to the
end of the destination string.

2-123

s t rncmp

strncmp
s t r i ng .h

Compares a specified number of characters with a string.

DECLARATION
i n t strncmpCconst char *sl, const char *s2, size_t n)

PARAMETERS

si A pointer to the first string.

s2 A pointer to the second string.

n The number of characters of the source string to compare.

RETURN VALUE
The i nt result of the comparison of not more than n initial characters of
the two strings:

Return value Meaning

>0 s i < s2

=0 s i = s2

<0 s i < s2

DESCRIPTION
Compares not more than n initial characters of the two strings.

2-124

strncpy

strncpy
s t r ing .h

Copies a specified number of characters from a string.

DECLARATION
char *strncpy(char *sl, const char *s2, size_t n)

PARAMETERS

si A pointer to the destination object.

s2 A pointer to the source string.

n The number of characters of the source string to copy.

R E T U R N VALUE
si.

DESCRIPTION
Copies not more than n initial characters from the source string into the
destination object.

2-125

strpbrk

strpbrk
s t r ing .h

Finds any one of specified characters in a string.

DECLARATION
char *strpbrk(const char *sl, const char *s2)

PARAMETERS
si A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence in the subject string of
any character from the object string.

Unsuccessful Null if none were found.

DESCRIPTION
Searches one string for any occurrence of any character from a second
string.

2-126

strrchr

strrchr
st r ing.h

Finds character from right of string.

DECLARATION
char *s t r rchr(const char * s , i n t c)

PARAMETERS
s A pointer to a string.

c An i nt representing a character.

RETURN VALUE
If successful, a pointer to the last occurrence of c in the string pointed to
bys.

DESCRIPTION
Searches for the last occurrence of a character (converted to a cha r) in a
string. The terminating null character is considered to be part of the string.

2-127

s t rspn

strspn
str ing.h

Spans characters in a string.

DECLARATION
size_t strspn(const char *sl, const char *s2)

PARAMETERS
si A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE
The length of the maximum initial segment of the string pointed to by si
that consists entirely of characters from the string pointed to by s2.

DESCRIPTION
Finds the maximum initial segment of a subject string that consists
entirely of characters from an object string.

2-128

strstr

strstr
st r ing.h

Searches for a substring.

DECLARATION
char *s t rs t r (cons t char *sl, const char *s2)

PARAMETERS
si A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE
Result Value

Successful A pointer to the first occurrence in the string pointed to
by 5 J of the sequence of characters (excluding the
terminating null character) in the string pointed to by s2.

Unsuccessful Null if the string was not found, si if s2 is pointing to a
string with zero length.

DESCRIPTION
Searches one string for an occurrence of a second string.

2-129

strtod

strtod
s td l i b .h

Converts a string to doubl e.

DECLARATION
double str tod(const char *nptr, char **endptr)

PARAMETERS
nptr A pointer to a string.

endptr A pointer to a pointer to a string.

RETURN VALUE
Result Value

Successful The double result of converting the ASCII representation
of an floating-point constant in the string pointed to by
nptr, leaving endptr pointing to the first character after
the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

DESCRIPTION
Converts the ASCII representation of a number into a doubl e, stripping
any leading white space.

2-130

strtol

strtol
s td l i b .h

Converts a string to a long integer.

DECLARATION
long i n t s t r to l (const char *nptr, char **endptr, i n t base)

PARAMETERS

nptr A pointer to a string.

endptr A pointer to a pointer to a string.

base An int value specifying the base.

RETURN VALUE
Result Value

Successful The long in t result of converting the ASCII
representation of an integer constant in the string pointed
to by nptr, leaving endptr pointing to the first character
after the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

DESCRIPTION
Converts the ASCII representation of a number into a 1 ong i nt using the
specified base, and stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer. Otherwise
the expected sequence consists of digits and letters representing an integer
with the radix specified by base (must be between 2 and 36). The letters
[a , z] and [A, Z] are ascribed the values 10 to 35. If the base is 16, the Ox
portion of a hex integer is allowed as the initial sequence.

2-131

strtoul

strtoul
s td l i b .h

Converts a string to an unsigned long integer.

DECLARATION
unsigned long i n t s t r tou l (const char *nptr,
char **endptr, base i n t)

PARAMETERS
nptr A pointer to a string

endptr A pointer to a pointer to a string

base An i nt value specifying the base.

RETURN VALUE
Result Value

Successful The u n s i g n e d l o n g i n t result of converting the ASCII
representation of an integer constant in the string pointed
to by nptr, leaving endptr pointing to the first character
after the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

DESCRIPTION
Converts the ASCII representation of a number into an unsigned long
i nt using the specified base, stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer. Otherwise
the expected sequence consists of digits and letters representing an integer
with the radix specified by base (must be between 2 and 36). The letters
[a , z] and [A, Z] are ascribed the values 10 to 35. If the base is 16, the Ox
portion of a hex integer is allowed as the initial sequence.

2-132

t an

tan
math.h

Tangent.

DECLARATION
double tan(double arg)

PARAMETERS
arg Adouble value in radians.

RETURN VALUE
The doubl e tangent of arg.

DESCRIPTION
Computes the tangent of arg radians.

2-133

t anh

tanh
math.h

Hyperbolic tangent.

DECLARATION
double tanh(double arg)

PARAMETERS
arg A doubl e value in radians.

RETURN VALUE
The double hyperbolic tangent of arg.

DESCRIPTION
Computes the hyperbolic tangent of a rg radians.

2-134

tolower

tolower
ctype.h

Converts to lower case.

DECLARATION
int tolowerdnt c)

PARAMETERS
c The i nt representation of a character.

RETURN VALUE
The i nt representation of the lower case character corresponding to c.

DESCRIPTION
Converts a character into lower case.

2-135

toupper

toupper
ctype.h

Converts to upper case.

DECLARATION
in t toupper(int c)

P A R A M E T E R S
c The i nt representation of a character.

R E T U R N VALUE
The i nt representation of the upper case character corresponding to c.

D E S C R I P T I O N
Converts a character into upper case.

2-136

va_arg

va_arg
stdarg.h

Next argument in function call.

DECLARATION
type va_arg(va_list ap, mode)

PARAMETERS
ap A value of type va_l i s t.

mode A type name such that the type of a pointer to an object
that has the specified type can be obtained simply by
postfixing a * to type.

RETURN VALUE
See below.

DESCRIPTION
A macro that expands to an expression with the type and value of the next
argument in the function call. After initialization by va_sta rt, this is the
argument after that specified by pa rmN. va_a rg advances ap to deliver
successive arguments in order.

For an example of the use of va_a rg and associated macros, see the files
pr in t f .c and intwri .c.

2-137

va end

va_end
stdarg.h

Ends reading function call arguments.

DECLARATION
void va_end(va_list ap)

PARAMETERS
ap A pointer of type va_l i s t to the variable-argument list.

RETURN VALUE
See below.

DESCRIPTION
A macro that facilitates normal return from the function whose variable
argument list was referenced by the expansion va_sta rt that initialized
va_list ap.

2-138

va list

va_list
s tda rg .h

Argument list type.

DECLARATION
char * v a _ l i s t [l]

PARAMETERS
None.

RETURN VALUE
See below.

DESCRIPTION
An array type suitable for holding information needed by v a_a r g and
va_end.

2-139

va start

va_start
stdarg.h

Starts reading function call arguments.

DECLARATION
void va_star t(va_l is t ap, parmN)

P A R A M E T E R S
ap A pointer of type v a_l i s t to the variable-argument list.

parmN The identifier of the rightmost parameter in the variable
parameter list in the function definition.

R E T U R N VALUE
See below.

DESCRIPTION
A macro that initializes ap for use by va_arg and va_end.

2-140

formatted_read

_formatted_read
i c c l bu t l . h

Reads formatted data.

DECLARATION
int _formatted_read (const char **line, const char **format,
va_list ap)

PARAMETERS
line A pointer to a pointer to the data to scan.

format A pointer to a pointer to a standard scanf format
specification string.

ap A pointer of type va_l i st to the variable argument list.

RETURN VALUE
The number of successful conversions.

DESCRIPTION
Reads formatted data. This function is the basic formatter of scanf.

_formatted_read is concurrently reusable (reentrant).

Note that the use of _f ormatted_read requires the special ANSI-defined
macros in the file stda rg . h, described above. In particular:

There must be a variable ap of type v a_l i s t.

There must be a call to va_s ta r t before calling _formatted_read.

There must be a call to va_end before leaving the current context.

The argument to va_s ta r t must be the formal parameter immediately to
the left of the variable argument list (..).

2-141

formatted write

formatted write
i c c l b u t l . h

Formats and writes data.

DECLARATION
int _formatted_write (const char *format, void outputf
Cchar, void *;, void *sp, va_list ap)

PARAMETERS
format A pointer to standard pri n t f / s p r i ntf format

specification string.

outputf A function pointer to a routine that actually
writes a single character created by
_f ormatted_wr i te . The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_wri t e .

sp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still be specified with
(voi d *) 0 as well as declared in the output
function.

ap A pointer of type va_l i s t to the variable-
argument list.

RETURN VALUE
The number of characters written.

2-142

formatted_write

DESCRIPTION
Formats write data. This function is the basic formatter of pri ntf and
spr i ntf, but through its universal interface can easily be adapted by the
user for writing to non-standard display devices.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration in the target-specific section.

_f ormatted_wri te is concurrently reusable (reentrant).

Note that the use of _f ormatted_wri te requires the special ANSI-defined
macros in the file s t d a r g . h, described above. In particular:

• There must be a variable apof type va_l i s t .

• There must be a call to va_s ta r t before calling _f ormatted_wri t e .

• There must be a call to va_en d before leaving the current context.

• The argument t o v a _ s t a r t must be the formal parameter immediately
to the left of the variable argument list (_.).

For an example of how to use _f ormatted_wri t e , see the file pr i n t f . c.

2-143

medium read

_medium_read
i c c l b u t l . h

Reads formatted data excluding floating-point numbers.

DECLARATION
int _medium_read (const char **line, const char **format,
va_1ist ap)

PARAMETERS
line A pointer to a pointer to the data to scan.

format A pointer to a pointer to a standard scanf format
specification string.

ap A pointer of type v a_l i s t to the variable argument list.

RETURN VALUE
The number of successful conversions.

DESCRIPTION
A reduced version of _f ormatted_read which is half the size, but does
not support floating-point numbers.

For further information see _f ormatted_read.

2-144

medium_write

_medium_write
icclbutl.h

Writes formatted data excluding floating-point numbers.

DECLARATION
i n t _medium_write (const char ^format, void outputfYchar,
void * ; , void *sp, va_ l is t ap)

PARAMETERS
fo rma t A pointer to standard p r i n t f / s p r i n t f format

specification string.

outputf A function pointer to a routine that actually
writes a single character created by
_formatted_wri te . The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_wri te .

sp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still be specified with
(void*) 0 as well as declared in the output
function.

ap A pointer of type va_l i s t to the variable-
argument list.

RETURN VALUE
The number of characters written.

2-145

medium wr i te

DESCRIPTION
A reduced version of_formatted_wri te which is half the size, but does
not support floating-point numbers.

For further information see _f ormatted wri te.

2-146

small_wnte

_small_write
icclbutl .h

Small formatted data write routine.

DECLARATION
int _sma11_write (const char *format, void outputf ("char,
void *) , void *sp, va_list ap)

PARAMETERS
format A pointer to standard p r i n t f / s p r i n t f format

specification string.

outputf A function pointer to a routine that actually
writes a single character created by
_f ormatted_wri te . The first parameter to this
function contains the actual character value and
the second a pointer whose value is always
equivalent to the third parameter of
_formatted_wri te .

sp A pointer to some type of data structure that the
low-level output function may need. If there is no
need for anything more than just the character
value, this parameter must still he specified with
(voi d *) 0 as well as declared in the output
function.

ap A pointer of type va_J i st to the variable-
argument list.

RETURN VALUE
The number of characters written.

small write

DESCRIPTION
A small version of _f ormatted_wr i te which is about a quarter of the size,
and uses only about 15 bytes of RAM.

The _small_wri te formatter supports only the following specifiers for
int objects:

%%,%d, %o,%c,%s,and%x.

It does not support field width or precision arguments, and no diagnostics
will be produced if unsupported specifiers or modifiers are used.

For further information see _f ormatted_wri te.

2-148

K&R AND ANSI C
LANGUAGE DEFINITIONS
There are two major standard C language definitions:

• Kernighan & Richie, commonly abbreviated to K&R.

This is the original definition by the authors of the C language, and is
described in their book The C Programming Language. The IAR C
Compiler is fully compatible with this definition.

• ANSI.

The ANSI definition is a development of the original K&R definition. It
adds facilities that enhance portability and parameter checking, and
removes a small number of redundant keywords. The IAR C Compiler
closely follows the ANSI approved standard X3.159-1989.

Both standards are described in depth in the latest edition of The C
Programming Language by Kernighan & Richie. This chapter summarizes
the differences between the standards, and is particularly useful to
programmers that are familiar with K&R C but would like to use the new
ANSI facilities.

ENTRY KEYWORD
In ANSI C the entry keyword is removed, so allowing entry to be a user-
defined symbol.

CONST KEYWORD
ANSI C adds const, an attribute indicating that a declared object is
unmodifiable and hence may be compiled into a read-only memory
segment. For example:

const i n t i ;
const i n t * ip ;

2-149

/* constant i n t */
/* variable pointer to
constant i n t * /

K&R AND ANSI C LANGUAGE DEFINITIONS

i n t *const i p ;

typedef s t ruc t

{

char *command;
void (*function)(void);
} cmd_entry

const cmd_entry table[]=

{
"help", do_help.
"reset", do_reset,
"quit", do_quit
};

VOLATILE KEYWORD
ANSI C adds vol ati 1 e, an attribute indicating that the object maybe
modified by hardware and hence any access should not be removed by
optimization.

SIGNED KEYWORD
ANSI C adds si gned, an attribute indicating that an integer type is signed.
It is the counterpart ofunsignedand can be used before any integer type-
specifier.

VOID KEYWORD
ANSI C adds voi d, a type-specifier that can be used to declare function
return values, function parameters, and generic pointers. For example:

void f () ; /* a function without return value */
type_spec f (v o i d) ; /* a function with no parameters */
void *p ; /* a generic pointer which can be cast

/* to any other pointer and is
assignment-compatible with any
pointer type */

2-150

/* constant pointer to variable
int */

/* define the struct 'cmd_entry'
*/

/* declare a constant object of
type 'cmd_entry* /*

K&R AND ANSI C LANGUAGE DEFINITIONS

ENUM KEYWORD
ANSI C adds enum, a keyword that conveniently defines successive named
integer constants with successive values. For example:

enum {zero,one,two,step=6,seven,eight};

DATA TYPES
In ANSI C the complete set of basic data types is:

{unsigned | signed} char
{unsigned | signed} i n t
{unsigned | signed} short
{unsigned j signed} long
f l oa t
double
long double
* /* Pointer */

FUNCTION DEFINITION PARAMETERS
In K&R C, function parameters are declared by conventional declaration
statements before the body of the function. In ANSI C, each parameter in
the parameter list is preceded by its type identifiers. For example:

K&R ANSI

long int g(s) long int g(char * s);
char * s;

{ {

The arguments of ANSI-type functions are always type-checked. The IAR
C Compiler checks the arguments of K&R-type functions only if the - g
option is used.

2-151

K&R AND ANSI C LANGUAGE DEFINITIONS

FUNCTION DECLARATIONS
In K&R C, function declarations do not include parameters. In ANSI C
they do. For example:

Type Example

K&R extern i n t f () ;

ANSI (namedform) extern i n t d o n g i n t v a l) ;

ANSI (unnamedform) extern i n t d o n g i n t) ;

In the K&R case, a call to the function via the declaration cannot have its
parameter types checked, and if there is a parameter-type mismatch, the
call will fail.

In the ANSI C case, the types of function arguments are checked against
those of the parameters in the declaration. If necessary, a parameter of a
function call is cast to the type of the parameter in the declaration, in the
same way as an argument to an assignment operator might be. Parameter
names are optional in the declaration.

ANSI also specifies that to denote a variable number of arguments, an
ellipsis (three dots) is included as a final formal parameter.

If external or forward references to ANSI-type functions are used, a
function declaration should appear before the call. It is unsafe to mix ANSI
and K&R type declarations since they are not compatible for promoted
parameters (char or f 1 oat) .

Note that in the IAR C Compiler, the - g option will find all compatibility
problems among function calls and declarations, including between
modules.

HEXADECIMAL STRING CONSTANTS
ANSI allows hexadecimal constants denoted by backslash followed by x
and any number of hexadecimal digits. For example:

#define Escape_C "\xlb\x43" /* Escape 'C \0 */

\x43 represents ASCII C which, if included directly, would be interpreted
as part of the he'xadecimal constant.

2-152

file:///xlb/x43

K&R AND ANSI C LANGUAGE DEFINITIONS

STRUCTURE AND UNION ASSIGNMENTS
In K&R C, functions and the assignment operator may have arguments
that are pointers to s t r u c t or uni on objects, but not s t r u c t or uni on
objects themselves.

ANSI C allows functions and the assignment operator to have arguments
that are s t r u c t or uni on objects, or pointers to them. Functions may also
return structures or unions:

st ruct s a,b; /* s t ruct s declared
ear l ie r * /

struct s f(struct s parm); /* declare function
accepting and returning
struct s */

a - f(b); /* call it */

To further increase the usability of structures, ANSI allows auto
structures to be initialized.

SHARED VARIABLE OBJECTS
Various C compilers differ in their handling of variable objects shared
among modules. The IAR C Compiler uses the scheme called Strict
REF/DEF, recommended in the ANSI supplementary document Rationale
For C. It requires that all modules except one use the keyword extern
before the variable declaration. For example:

Module #1 Module #2 Module #3

int i; extern int i; extern int i;

int j=4; extern int j; extern int j;

2-253

K&R AND ANSI C LANGUAGE DEFINITIONS

#elif
ANSI C's new #e! i f directive allows more compact nested else-if
structures.

e l i f expression

is equivalent t o :
#else
#if expression

#endif

#error
The #e r r o r directive is provided for use in conjunction with conditional
compilation. When the #e r ro r directive is found, the compiler issues an
error message and terminates.

DIAGNOSTICS
The diagnostic error and warning messages produced fall into six
categories:

• Command line error messages.

• Compilation error messages.

• Compilation warning messages.

• Compilation fatal error messages.

• Compilation memory overflow message.

• Compilation internal error messages.

In addition to these general error and warning messages, any target-
specific error and warning messages are documented in the chapter
Diagnostics.

COMMAND LINE ERROR MESSAGES
Command line errors occur when the compiler finds a fault in the
parameters given on the command line. In this case, the compiler issues a
self-explanatory message.

COMPILATION ERROR MESSAGES
Compilation error messages are produced when the compiler has found a
construct which clearly violates the C language rules, such that code
cannot be produced.

The ICC C Compiler is more strict on compatibility issues than many other
C compilers. In particular pointers and integers are considered as
incompatible when not explicitly casted. Compilation error messages are
described in Compilation error messages in this chapter.

DIAGNOSTICS

COMPILATION WARNING MESSAGES
Compilation warning messages are produced when the compiler finds a
programming error or omission which is of concern but not so severe as to
prevent the completion of compilation. Compilation warning messages are
described in Compilation warning messages in this chapter.

COMPILATION FATAL ERROR MESSAGES
Compilation fatal error messages are produced when the compiler has
found a condition that not only prevents code generation, but which
makes further processing of the source not meaningful. After the message
has been issued, compilation terminates. Compilation fatal error messages
are described in Compilation error messages in this chapter, and marked as
fatal.

COMPILATION MEMORY OVERFLOW MESSAGE
When the compiler runs out of memory, it issues the special message:

* * * C 0 M P I L E R O U T O F M E M O R Y * * *
Dynamic memory used: nnnnnn bytes

If this error occurs, the cure is either to add system memory or to split
source files into smaller modules. Also note that the -q, -x, -A, - P, and - r
(not - rn) switches cause the compiler to use more memory.

Also, see the chapter Getting Started, for more information.

COMPILATION INTERNAL ERROR MESSAGES
A compiler internal error message indicates that there has been a serious
and unexpected failure due to a fault in the compiler itself, for example,
the failure of an internal consistency check. After issuing a self-
explanatory message, the compiler terminates.

2-156

DIAGNOSTICS

Internal errors should normally not occur and should be reported to the
IAR Systems technical support group. Your report should include all
possible information about the problem and preferably also a diskette with
the program that generated the internal error.

COMPILATION ERROR MESSAGES
No Error message Suggestion

0 Invalid syntax

1 Too deep #i nclude nesting
(max is 10)

2 Failed to open #i nclude
file 'name'

Invalid #include filename

Unexpected end of file
encountered

The compiler could not decode
the statement or declaration.

Fatal. The compiler limit for
nesting of #i ncl ude files was
exceeded. One possible cause is
an inadvertently recursive
#i ncl ude file.

Fatal. The compiler could not
open an #i ncl ude file. Possible
causes are that the file does not
exist in the specified directories
(possibly due to a faulty -1
prefix or C_INCLUDE path) or is
disabled for reading.

Fatal. The #i ncl ude filename
was invalid. Note that the
#i ncl ude filename must be
written < f i 1 e > or " f i 1 e".

Fatal. The end of file was
encountered within a
declaration, function definition,
or during macro expansion. The
probable cause is bad () or { }
nesting.

DIAGNOSTICS

No Error message Suggestion

5 Too long source l i n e (max The source line length exceeds
is 512 c h a r s) ; t runcated the compiler limit.

6 Hexadecimal constant without The prefix Ox or OX of
d i g i t s hexadecimal constant was found

without following hexadecimal
digits.

7 Character constant l a rge r A character constant contained
than "long" too many characters to fit in the

space of a long integer.

8 Inva l id charac te r A character not included in the
encountered: * \xhh ' ; ignored C character set was found.

9 Inva l id f loa t ing point A floating-point constant was
cons tan t found to be too large or have

invalid syntax. See the ANSI
standard for legal forms.

10 Inva l id d i g i t s in octa l The compiler found a non-octal
cons tan t digit in an octal constant. Valid

octal digits are: 0-7.

11 Missing de l imi te r in l i t e r a l No closing delimiter ' or " was
or charac te r constant found in character or literal

constant.

12 S t r i ng too long (max is 509) The limit for the length of a
single or concatenated strings
was exceeded.

13 Argument to #define too Lines terminated by \ resulted in
long (max is 512) a #define line that was too long.

2-158

DIAGNOSTICS

No Error message

14 Too many formal parameters
f o r #def ine (max is 127)

15 ' , ' o r ') ' expected

16 I d e n t i f i e r expected

17 Space or tab expected

18 Macro parameter 'name'
redef ined

19 Unmatched #e l se , #end i f or
e l i f

20 No such pre-processor
command: 'name'

21 Unexpected token found in
pre-processor l i n e

22 Too many nested
parameter ized macros
(max i s 50)

23 Too many a c t i v e macro
parameters (max is 256)

24 Too deep macro nest ing (max
i s 100)

Suggestion

Fatal. Too many formal
parameters were found in a
macro definition (#def i ne
directive).

The compiler found an invalid
syntax of a function definition
header or macro definition.

An identifier was missing from a
declarator, goto statement, or
pre-processor line.

Pre-processor arguments must be
separated from the directive
with tab or space characters.

The formal parameter of a
symbol in a #defi ne statement
was repeated.

F a t a l . A # i f , # i f d e f , o r
#i f ndef was missing.

was followed by an unknown
identifier.

A pre-processor line was not
empty after the argument part
was read.

Fatal. The pre-processor limit
was exceeded.

Fatal. The pre-processor limit
was exceeded.

Fatal. The pre-processor limit
was exceeded.

DIAGNOSTICS

No Error message Suggestion

25 Macro 'name' called with
too many parameters

26 Actual macro parameter too
long (max is 512)

27 Macro 'name' called with
too few parameters

28 Missing #endif

29 Type spec i f ie r expected

30 I den t i f i e r unexpected

31 I den t i f i e r 'name' redeclared

32 Inval id declaration syntax

Fatal. A parameterized #def i ne
macro was called with more
arguments than declared.

A single macro argument may
not exceed the length of a source
line.

A parameterized #def i ne macro
was called with fewer arguments
than declared.

Fatal. The end of file was
encountered during skipping of
text after a false condition.

A type description was missing.
This could happen in s t r u c t ,
union, prototyped function
definitions/declarations, or in
K&R function formal parameter
declarations.

There was an invalid identifier.
This could be an identifier in a
type name definition like:
s i z e o f (i n t * i d e n t) ;
or two consecutive identifiers.

There was a redeclaration of a
declarator identifier.

There was an undecodable
declarator.

33 Unbalanced ' (' or ') ' in There was a parenthesis error in
d e c l a r a t o r a declarator.

DIAGNOSTICS

No Error message Suggestion

34 C statement or func -de f in
inc lude f i l e , add " i " t o
the " - r " swi tch

41 Member 'name' of " s t r u c t "
or " un ion " redec lared

42 Empty " s t r u c t " or " u n i o n "

To get proper C source line
stepping for #i nclude code
when the C-SPY debugger is
used, the - ri option must be
specified.

Other source code debuggers
(that do not use the UBROF
output format) may not work
with code in #i ncl ude files.

A s t r u c t , union, or enumwas
followed by an invalid token (s).

A s t r u c t , uni on, or enum tag is
already defined in the current
scope.

A function was declared as a
member of s t r u c t or union.

The declared width of field
exceeds the size of an integer (nn
is 16 or 32 depending on the
target processor).

There was a missing , or ; at the
end of declarator.

Array dimension negative or
larger than can be represented in
an unsigned integer.

A member of s t r u c t or union
was redeclared.

There was a declaration of
s t r u c t or uni on containing no
members.

35 I n v a l i d d e c l a r a t i o n of
" s t r u c t " , " u n i o n " or "enum"
type

36 Tag i d e n t i f i e r 'name'
redeclared

37 Funct ion 'name' dec lared
w i t h i n " s t r u c t " o r " u n i o n "

38 I n v a l i d w id th of f i e l d (max
i s nn)

39 ' , * or ' ; ' expected

40 Array dimension ou ts ide of
"unsigned i n t " bounds

DIAGNOSTICS

No Error message Suggestion

43 Object cannot be i n i t i a l i z e d

44 ' ; ' expected

4 5 '] ' expected

46 ' : ' expected

4 7 ' (' expected

4 8 ') ' expected

49 ' , ' expected

50 ' { ' expected

5 1 ' } ' expected

52 Too many l o c a l va r i ab les
and formal parameters (max
i s 1024)

53 Dec la ra to r too complex (max
i s 128 ' C and/or ' * ')

54 I n v a l i d s torage c lass

There was an attempted
initialization of typedef
declarator or s t r u c t or uni on
member.

A statement or declaration needs
a terminating semicolon.

There was a bad array
declaration or array expression.

There was a missing colon after
de fau l t , case label, or in ?-
operator.

The probable cause is a
misformed for, i f, or whi 1 e
statement.

The probable cause is a
misformed for, i f, or whi 1 e
statement or expression.

There was an invalid
declaration.

There was an invalid declaration
or initializer.

There was an invalid declaration
or initializer.

Fatal. The compiler limit was
exceeded.

The declarator contained too
many (,), or* .

An invalid storage-class for the
object was specified.

DIAGNOSTICS

No Error message Suggestion

55 Too deep block nesting (max Fatal. The {} nesting in a
is 50) function definition was too deep.

56 Array of functions An attempt was made to declare

an array of functions.

The valid form is array of pointers to functions:

i n t array [5] () ; /* Inval id */
i n t (*array [5]) () ; /* Valid */

57 Missing array dimension There was a multi-dimensional
specifier array declarator with a missing

specified dimension. Only the
first dimension can be excluded
(in declarations of extern arrays
and function formal
parameters).

58 Identif ier 'name' redefined There was a redefinition of a
declarator identifier.

59 Function returning array Functions cannot return arrays.

60 Function definition expected A K&R function header was
found without a following
function definition, for example:

i n t f (i) ; / * Inval id * /

61 Missing ident i f ier in A declarator lacked an identifier.
declaration

62 Simple variable or array of Only pointers, functions, and
a "void" type formal parameters can be of

void type.

63 Function returning function A function cannot return a
function, as in:

i n t f () () ; / * Inval id * /

DIAGNOSTICS

No Error message Suggestion

64 Unknown size of variable
object 'name'

65 Too many errors encountered
O100)

66 Function 'name' redefined

67 Tag 'name' undefined

68 "case" outside "switch"

69 "interrupt" function may not
be referred or called

70 Duplicated "case" label: nn

71 "default" outside "switch"

72 Mul t ip le "defau l t " wi th in
"swi tch"

The defined object has unknown
size. This could be an external
array with no dimension given
or an object of an only partially
(forward) declared s t r u c t or
union.

Fatal. The compiler aborts after
a certain number of diagnostic
messages.

Multiple definitions of a
function were encountered.

There was a definition of
variable of en urn type with type
undefined or a reference to
undefined s t r u c t or uni on type
in a function prototype or as a
si zeof argument.

There was a case without any
active swi tch statement.

A n i n t e r r u p t function call was
included in the program.
Interrupt functions can be called
by the run-time system only.

The same constant value was
used more than once as a case
label.

There was a def aul t without
any active swi tch statement.

More than one def aul t in one
swi tch statement.

DIAGNOSTICS

No Error message Suggestion

73 Missing "whi le" in "do'
"whi le" statement

74 Label 'name' redefined

75 "continue" outside i t e ra t i on
statement

76 "break" outside "switch" or
i t e ra t ion statement

77 Undefined label 'name'

78 Pointer to a f i e l d not
allowed

s t ruc t

{

int * f : 6 ; /* Invalid */

}

79 Argument of binary operator
missing

80 Statement expected

Probable cause is missing {}
around multiple statements.

A label was defined more than
once in the same function.

There was a conti nue outside
any active while, do ... while,
or for statement.

There was a brea k outside any
active switch, while, do ...
whi 1 e, or f or statement.

There is a goto 1 abel with no
l a b e l : definition within the
function body.

There is a pointer to a field
member of s t r u c t or union:

The first or second argument of
a binary operator is missing.

One of ? : ,] or } was found
where statement was expected.

2-165

DIAGNOSTICS

No Error message Suggestion

81 Declaration after statement A declaration was found after a

statement.

This could be due to an unwanted ; for example:

int i ; ;
char c; /* Invalid */
Since the second ; is a statement it causes a declaration after a
statement.

82 "else" without preceding The probable cause is bad {}
"if" nesting.

83 "enum" constant(s) outside An enumeration constant was
"int" or "unsigned" "int" created too small or too large.
range

84 Function name not allowed in An attempt was made to use a
this context function name as an indirect

address.

85 Empty "s t ruct" , "union" or There is a definition of s t ruct
"enum" or uni on that contains no

members or a definition of enum
that contains no enumeration
constants.

DIAGNOSTICS

No Error message Suggestion

86 Inval id formal parameter There is a fault with the formal
parameter in a function
declaration.

Possible causes are:

i n t f () ; /* va l id K&R declaration */
i n t f(i); /* i nva l id K&R declaration */
i n t f(i n t i) ; /* va l id ANSI declaration */
i n t f(i); /* i nva l id ANSI declaration */

87 Redeclared formal parameter : A formal parameter in a K&R
'name' function definition was declared

more than once.

88 Contradictory funct ion void appears in a function
dec la ra t ion parameter type list together with

other type of specifiers.

89 " . . . " without previous . . . cannotbe the only
parameter(s) parameter description specified.

For example:

i n t f (. . .) : / * Inval id * /
i n t f (i n t , . . .) ; / * Valid * /

90 Formal parameter i d e n t i f i e r An identifier of a parameter was
missing missing in the header of a

prototyped function definition.

For example:

int f(int *p, char, float ff) /* Invalid - second
parameter has no name */

{
/* function body */

}

DIAGNOSTICS

No Error message Suggestion

91 Redeclared number of formal
parameters

For example:

int f(int, char); /*
int f(int); /*
int f(int, char, float); /*

92 Prototype appeared after
reference

93 Initializer to field of
width nn (bits) out of
range

94 Fields of width 0 must not
be named

95 Second operand for division
or modulo is zero

96 Unknown size of object
pointed to

97 Undefined "static" function
'name'

A prototyped function was
declared with a different number
of parameters than the first
declaration.

f i r s t declarat ion-val id * /
fewer parameters-invalid */
more parameters-invalid */

A prototyped declaration of a
function appeared after it was
defined or referenced as a K&R
function.

A bit-field was initialized with a
constant too large to fit in the
field space.

Zero length fields are only used
to align fields to the next i nt
boundary and cannot be
accessed via an identifier.

An attempt was made to divide
by zero.

An incomplete pointer type is
used within an expression where
size must be known.

A function was declared with
s t a t i c storage class but never
defined.

98 Primary expression expected An expression was missing.

99 Extended keyword not allowed
in th i s context

An extended processor-specific
keyword occurred in an illegal
context; eg i n t e r r u p t i n t i.

DIAGNOSTICS

No Error message Suggestion

100 Undeclared i d e n t i f i e r : There was a reference to an
'name' identifier that had not been

declared.

101 F i r s t argument of ' . ' The dot operator was . applied
opera tor must be of " s t r u c t " to an argument that was not
or "union" type s t r u c t or union.

102 F i r s t argument of ' - > ' was The arrow operator -> was
not poin ter to " s t r u c t " or applied to argument that was not
"union" pointer to a s t r u c t or union.

103 Inval id argument of "sizeof" The si zeof operator was
opera tor applied to abit-field, function, or

extern array of unknown size.

104 I n i t i a l i z e r " s t r i n g " exceeds An array of char with explicit
ar ray dimension dimension was initialized with a

string exceeding array size.

For example:

char array [4] = "abode";
/ * inva l id * /

105 Language fea ture not The compiler does not currently
i mpl emented: ' name' support the language feature

used.

106 Too many function parameters Fatal. There were too many
(max is 127) parameters in function

declaration/definition.

2-169

DIAGNOSTICS

No Error message Suggestion

107 Function parameter 'name' A formal parameter in a
already declared function definition header was

declared more than once.

For example:

/* K&R function */ int myfunc(i, i) /* invalid */
int i;

{
}

/* Prototyped function */
int myfunc(int i, int i) /* invalid */

{
}

108 Function parameter 'name' In a K&R function definition,
declared but not found in parameter declared but not
header

For example:

specified in the function header.

int myfunc(i)
int i, j /* invalid - j is not specified in the function
header */

{
}

109 ' ; ' unexpected

110 ') ' unexpected

111 ' { ' unexpected

112 ' , ' unexpected

An unexpected delimiter was
encountered.

An unexpected delimiter was
encountered.

An unexpected delimiter was
encountered.

An unexpected delimiter was
encountered.

DIAGNOSTICS

No Error message Suggestion

113 ' : ' unexpected

114 ' [' unexpected

115 ' (' unexpected

116 Integral expression
requi red

117 Floating point expression
required

118 Scalar expression required

119 Pointer expression required

120 Arithmetic expression
required

121 Lvalue required

122 Modifiable lvalue required

123 Prototyped function argument
number mismatch

An unexpected delimiter was
encountered.

An unexpected delimiter was
encountered.

An unexpected delimiter was
encountered.

The evaluated expression
yielded a result of the wrong
type.

The evaluated expression
yielded a result of the wrong
type.

The evaluated expression
yielded a result of the wrong
type.

The evaluated expression
yielded a result of the wrong
type.

The evaluated expression
yielded a result of the wrong
type.

The expression result was not a
memory address.

The expression result was not a
variable object or was a const.

A prototyped function was
called with a number of
arguments different from the
number declared.

DIAGNOSTICS

No Error message Suggestion

124 Unknown "s t ruct" or "union" An attempt was made to
member: 'name'

125 Attempt to take address of
field

126 Attempt to take address of
"register" variable

127 Incompatible pointers

reference a nonexistent member
of a s t ruct or union.

The & operator may not be used
on bit-fields.

The & operator may not be used
on objects with regi ster
storage class.

There must be full compatibility
of objects that pointers point to.

In particular, if pointers point (directly or indirectly) to prototyped
functions, the code performs a compatibility test on return values
and also on the number of parameters and their types. This means
that incompatibility can be hidden quite deeply, for example:

char (* (* p l) [8]) (i n t) ;
char (* (* p 2) [8]) (f l o a t) ;

/* pi and p2 are incompatible
have incompatible types */

the function parameters

The compatibility test also includes checking of array dimensions if
they appear in the description of the objects pointed to, for example:

i n t (* p l) [8] ;
i n t (* p2) [9] :

/* pi and p2 are incompatible - array dimensions d i f f e r
* /

128 Function argument
incompatible with i t s
declarat ion

A function argument is
incompatible with the argument
in the declaration.

DIAGNOSTICS

No Error message

129 Incompatible operands of
binary operator

130 Incompatible operands of
'=' operator

131 Incompatible "return"
expression

132 Incompatible initializer

133 Constant value required

134 Unmatching "struct" or
"union" arguments to '?'
operator

135 " pointer + pointer"
operation

136 Redeclaration error

137 Reference to member of
undefined "s t ruc t " or
"union"

Suggestion

The type of one or more
operands to a binary operator
was incompatible with the
operator.

The type of one or more
operands to = was incompatible
with -.

The result of the expression is
incompatible with the re turn
value declaration.

The result of the initializer
expression is incompatible with
the object to be initialized.

The expression in a case label,
#i f, #el i f, bit-field declarator,
array declarator, or static
initializer was not constant.

The second and third argument
of the ? operator are different.

Pointers may not be added.

The current declaration is
inconsistent with earlier
declarations of the same object.

The only allowed reference to
undefined s t r u c t or union
declarators is a pointer.

2-173

DIAGNOSTICS

No Error message Suggestion

138 "- pointer" expression

139 Too many "extern" symbols
declared (max is 32767)

140 "vo id" pointer not allowed
in th i s context

141 #error 'any message'

142 " i n te r rup t " function can
only be "vo id" and have no
arguments

143 Too large, negative or
overlapping " in te r rup t "
[value] in name

The - operator may be used on
pointers only if both operators
are pointers, that is, po in ter -
poi n ter . This error means that
an expression of the form non-
poin ter - po in te r was found.

Fatal. The compiler limit was
exceeded.

A pointer expression such as an
indexing expression involved a
void pointer (element size
unknown).

Fatal. The pre-processor
directive #e r r o r was found,
notifying that something must be
defined on the command line in
order to compile this module.

An interrupt function
declaration had a non-void result
and/or arguments, neither of
which are allowed.

Check the [vec to r] values of
the declared interrupt functions.

DIAGNOSTICS

No Error message

144 Bad context for storage
modifier (storage-class or
function)

145 Bad context for function
call modifier

146 Unknown #pragma identifier

147 Extension keyword "name" is
already defined by user

148 ' = ' expected

149 Attempt to take address of
" s f r " or " b i t " variable

Suggestion

The no_i n i t keyword can only
be used to declare variables with
static storage-class. That is,
no_i n i t cannot be used in
typedef statements or applied
to auto variables of functions.
An active #pragma
memory=no_init
can cause such errors when
function declarations are found.

The keywords i n t e r rup t ,
banked, non_banked, or
moni t o r can be applied only to
function declarations.

An unknown pragma identifier
was found. This error will
terminate object code generation
only if the - g (enable type
check) compiler option is in use.

Upon executing

#pragma language=extended

the compiler found that the
named identifier has the same
name as an extension keyword.
This error is only issued when
compiler is executing in ANSI
mode.

An sf r-declared identifier must
be followed by =val ue.

The & operator may not be
applied to variables declared as
b i t or as sfr .

DIAGNOSTICS

No Error message Suggestion

150 I l l ega l range for " s f r "
or " b i t " address

151 Too many functions defined
in a single module.

152 expected

153 I l l ega l context fo r
extended spec i f ie r

The address expression is not a
valid bi t or sf r address.

There may not be more than 256
functions in use in a module.
Note that there are no limits to
the number of declared
functions.

The . was missing from a bi t
declaration.

See Diagnostics.

COMPILATION WARNING
MESSAGES
No Warning message Suggestion

0 Macro 'name' redefined A symbol defined with #defi ne
was redeclared with a different
argument or formal list.

Macro formal parameter 'name'A #define formal parameter
is never referenced

Macro 'name' is already
#undef

Macro 'name' cal led with
empty parameter(s)

never appeared in the argument
string.

#undef was applied to a symbol
that was not a macro.

A parameterized macro defined
in a #def i ne statement was
called with a zero-length
argument.

DIAGNOSTICS

No Warning message Suggestion

4 Macro 'name' is cal led
recursively; not expanded

5 Undefined symbol 'name' in
i f or # e l i f ; assumed zero

6 Unknown escape sequence
(' \ c ') ; assumed ' c '

8 Inval id type-speci f ier for
f i e l d ; assumed " i n t "

9 Undeclared function
parameter 'name'; assumed
" i n t "

A recursive macro call makes the
pre-processor stop further
expansion of that macro.

It is considered as bad
programming practice to assume
that non-macro symbols should
be treated as zeros in #i f and
#el i f expressions. Use either:

#i fdef symbol

or

i f defined (symbol)

A backslash (\) found in a
character constant or string
literal was followed by an
unknown escape character.

The character sequence /* was
found within a comment, and
ignored.

In this implementation, bit-fields
maybe specified only as i n t or
unsigned in t .

An undeclared identifier in the
header of a K&R function
definition is by default given the
type in t .

An array with an explicit
dimension was specified as a
formal parameter, and the
compiler treated it as a pointer to
object.

10 Dimension of array ignored;
array assumed pointer

7 Nested comment found without
using the '-C option

DIAGNOSTICS

No Warning message Suggestion

11 Storage class " s t a t i c "
ignored; 'name' declared
"extern"

12 Incompletely bracketed
i n i t i a l i z e r

13 Unreferenced label 'name'

14

15

16

17

18

Type specifier missing;
assumed "int"

Wrong usage of string
operator ('#' or '##');
ignored

An object or function was first
declared as extern (explicitly or
by default) and later declared as
s t a t i c. The static declaration is
ignored.

To avoid ambiguity, initializers
should either use only one level
of {} brackets or be completely
surrounded by {} brackets.

Label was defined but never
referenced.

No type specifier given in
declaration - assumed to be i nt.

This implementation restricts
usage of # and ## operators to
the token-field of parameterized
macros.

In addition the # operator must precede a formal parameter:

#define mac(pi)
#define mac(pl,p2)

#pl /* Becomes "pi" */
pl+p2#add_this /* Merged p2 */

Non-void function: "return"
with <expression>; expected

Invalid storage class for
function; assumed to be
"extern"

Redeclared parameter's
storage class

A non-void function definition
should exit with a defined return
value in all places.

Invalid storage class for function
- ignored. Valid classes are
extern, s t a t i c , or typedef.

Storage class of a function
formal parameter was changed
from r e g i s t e r to auto or vice
versa in a subsequent
declaration/definition.

DIAGNOSTICS

No Warning message Suggestion

19 Storage class "extern"
ignored; 'name' was f i r s t
declared as " s t a t i c "

20 Unreachable statement(s)

21

For example:

break;
i = 2;

An identifier declared as s t a t i c
was later explicitly or implicitly
declared as extern. The extern
declaration is ignored.

One or more statements were
preceded by an unconditional
jump or return such that the
statement or statements would
never be executed.

/* Never executed */

Unreachable statement(s) at
unreferenced label 'name'

One or more labeled statements
were preceded by an
unconditional jump or return
but the label was never
referenced, so the statement or
statements would never be
executed.

For example:

break;
here:
i = 2; /* Never executed */

22 Non-void funct ion: exp l i c i t
" re turn" <expression>;
expected

A non-void function generated
an implicit return.

This could be the result of an unexpected exit from a loop or switch.
Note that a swi ten without def aul t is always considered by the
compiler to be 'exitable' regardless of any case constructs.

DIAGNOSTICS

No Warning message Suggestion

23 Undeclared function 'name'; A reference to an undeclared
assumed "extern" "int" function causes a default

declaration to be used. The
function is assumed to be of
K&R type, have extern storage
class, and return int.

24 Stat ic memory option A command line option for static
converts local "auto" or memory allocation caused auto
"regis ter" to " s ta t i c" and register declarations to be

treated as s t a t i c .

25 Inconsistent use of K&R A K&R function was called with
function - varying number of a varying number of parameters.
parameters

26 Inconsistent use of K&R A K&R function was called with
function - changing type of changing types of parameters.
parameter

For example:

myfunc (34); /* i n t argument */
myfunc(34.6); /* f l oa t argument */

27 Size of "extern" object extern arrays should be
'name' is unknown declared with size.

28 Constant [index] outside There was a constant index
array bounds outside the declared array

bounds.

29 Hexadecimal escape sequence The escape sequence is
larger than "char" truncated to fit into char.

2-180

DIAGNOSTICS

No Warning message Suggestion

30 At t r ibute ignored Since const or vo la t i l e are
attributes of objects they are
ignored when given with a
structure,union, or
enumerati on tag definition that
has no objects declared at the
same time. Also, functions are
considered as being unable to
return const or vol ati 1 e.

For example:

const struct s
{

}; /* no object declared, const ignored - warning*/
const int myfunc(void);
/* function returning const int - warning */
const int (*fp)(void); /* pointer to function returning
const int - warning*/
int (*const fp)(void);
/* const pointer to function returning int - OK,
no warning */

31 Incompatible parameters of Pointers (possiblyindirect) to
K&R functions functions or K&R function

declarators have incompatible
parameter types.

The pointer was used in one of following contexts:

pointer - pointer,
expression ? ptr : p t r ,
pointer relational_op pointer
pointer equality_op pointer
pointer = pointer
formal parameter vs actual parameter

DIAGNOSTICS

No Warning messages Suggestion

32 Incompatible numbers of Pointers (possibly indirect) to
parameters of K&R functions functions or K&Rfunction

declarators have a different
number of parameters.

The pointer is directly used in one of following contexts:

pointer - pointer
expression ? pt r : p t r
pointer relat ional_op pointer
pointer equality_op pointer
pointer = pointer
formal parameter vs actual parameter

33 Local or formal 'name' was A formal parameter or local
never referenced variable object is unused in the

function definition.

34 Non-printable character It is considered as bad
' \xhh' found in l i t e r a l or programming practice to use
character constant non-printable characters in

string literals or character
constants. Use \0xhhh to get the
same result.

35 Old-style (K&R) type of An old style K&R function
function declarator declarator was found. This

warning is issued only if the - gA
option is in use.

36 Floating point constant out A floating-point value is too
of range large or too small to be

represented by the floating-point
system of the target.

37 Il legal float operation: During constant arithmetic a
division by zero not allowed zero divide was found.

file:///0xhhh

INDEX
#elif (directive) 2-154
#error (directive) 2-154
#include (directive) 1-18
#pragma (directive) 1-35,1-97
#pragma directive summary 1-82
#pragma directives

bitfields = default 1-97
bitfields = reversed 1-97
function = default 1-99
function = interrupt 1-100
function = monitor 1-101
function = non-banked 1-102
function = C_task 1-99
language = default 1-102
language = extended 1-103
memory = constseg 1-103
memory = dataseg 1-104
memory = default 1-105
memory = no_init 1-106
warnings = default 1-107
warnings = off 1-107
warnings = on 1-108

$ in identifiers 2-35
-A (command line option) 2-6
-a (command line option) 2-5
-b (command line

option) 1-44,2-7
-C (command line option) 2-8
-c (command line option) 2-7
-D (command line option) 2-8
-e (command line option) 2-10
-F (command line option) 2-11
-f (command line option) 2-10
-G (command line option) 2-17

-g (command line option) 2-11
-H (command line option) 2-17
-I (command line option) 2-18
-i (command line option) 2-18
-K (command line option) 2-19
-L (command line option) 2-20
-1 (command line option) 2-20
-m (command line option) 1-137
-O (command line option) 2-21
-o (command line option) 2-21
-P (command line option) 2-22
-p (command line option) 2-22
-q (command line option) 2-23
-R (command line option) 2-25
-r (command line option) 2-23
-S (command line option) 2-26
-s (command line option) 2-25
-T (command line option) 2-27
-t (command line option) 2-26
-U (command line option) 2-27
-u (command line option) 1-138
-v (command line option) 1-139
-W (command line

option) 1-139,2-28
-X (command line option) 2-29
-x (command line option) 2-29
-y (command line option) 2-30
-z (command line option) 2-31
_formatted_read (library

function) 1-74,2-141
_formatted_write (library

function) 1-72,2-142
_medium_read (library

function) 1-74,2-144

INDEX

.medium_write (library atof (library function) 2-54
function) 1-72,2-145 atoi (library function) 2-55
.ope (intrinsic function) 1-116 atol (library function) 2-56
small_write (library autoexec.bat, editing 1-8
function) 1-73,2-147
_C_task (extended -n
keyword) 1-85 &
_ V E R _ (macro) 2-33

banked (extended keyword) 1-86
* banked memory 1-63
-*- modifying the

specification 1-65
abort (library function) 2-47 banked memory model 1-63
abs (library function) 2-48 bitfields = default (#praj *ma
acos (library function) 2-49 directive) 1-97
address_24_of (intrinsic bitfields = reversed (#pragma

function) 1-109 directive) 1-97
advanced C examples 1-53
ANSI definition 2-149 C data types 2-151 C

function declarations 2-152
function definition C include files 1-12

parameters 2-151 C-SPY
hexadecimal string files 1-15

constants 2-152 using 1-33
asin (library function) 2-50 calling convention to
assembler assembler 1-118

calling from C 1-122 calloc (library
files 1-14 function) 1-74, 2-57
interupt functions 1-122 CCSTR (segment) 1-129

assembler interface CDATAO (segment) 1-132
calling convention 1-118 ceil (library function) 2-58

assembly language interface 1-117 character input and output 1-71
assembly source file 1-19 CODE (segment) 1-129
assert (library function) 2-51 command file 1-19
assumptions V command line options
atan (library function) 2-52 -A 2-6
atan2 (library function) 2-53 -a 2-5

INDEX

command line options (continued) command line options
-b 1-44, 2-7 summary 2-1
-C 2-8 compiler version 2-33
-c 2-7 compiling a program 1-28
-D 2-8 const (keyword) 2-149
-e 2-10 CONST (segment) 1-130
-F 2-11 conventions V

-f 2-10 cos (library function) 2-59
-G 2-17 cosh (library function) 2-60

-g 2-11 CSTACK (segment) 1-130
-H 2-17 cstartup routine 1-74
-I 2-18 CSTR (segment) 1-131
-i 2-18 ctype.h (header file) 2-38
-K 2-19 CJNCLUDE (environment
-L 2-20 variable) 1-12
-1 2-20
-m
-0

1-137
2-21 D

-0 2-21
-P 2-22 data banking 1-79

-P 2-22 data pointers 1-79

-q 2-23 data representation 1-77
-R 2-25 data types 1-77, 2-151
-r 2-23 DATAO (segment) 1-132
-S 2-26 development cycle 1-24
-s 2-25 development system
-T 2-27 structure 1-3
-t 2-26 diagnostics 2-155
-U 2-27 error messages 2-157
-u 1-138 warning messages 2-176
-V 1-139 Z80 specific 1-141
-W 1-139, 2-28 directives
-X 2-29 #elif 2-154
-X 2-29 #error 2-154

-y 2-30 #include 1-18
-z 2-31 #pragma 1-35, 1-97
Z80 specific 1-137

INDEX

directories
etc 1-11
exe 1-10
iccz80 1-12
inc 1-13
lib 1-14

disable_interrupt (intrinsic
function) 1-111

div (library function) 2-61
DOS/16M 1-20
DOS16M (environment

variable) 1-20
dumpJLregister (intrinsic

function) 1-111

E
ECSTR (segment) 1-131
efficient coding 1-79
enable_interrupt (intrinsic

function) 1-111
entry (keyword) 2-149
enum (keyword) 1-78, 2-151
environment variables

CJNCLUDE 1-12
DOS16M 1-20
QCCZ80 1-20
XLINK_DFLTDIR 1-14

errno.h (header file) 2-44
error messages 2-157
etc directory 1-11
exe directory 1-10
executable files 1-10
exit (library function) 2-62
exp (library function) 2-63
extended command line file 1-19
extended keyword summary 1-81

extended keywords
banked 1-86
interrupt 1-39,1-87
monitor 1-89
nonjbanked 1-90
no_init 1-91
sfr 1-92
using 1-93

C task 1-85
tended memory, checking 1-20
tensions 1-81
file 1-15

F
fabs (library function) 2-64
file types 1-15
files

assembler 1-14
C include 1-12
C-SPY 1-15
executable 1-10
include 1-13
installed 1-9
library 1-14
miscellaneous 1-11
source 1-12
tutorial 1-23

floath (header file) 2-44
floating-point format 1-78

4-byte 1-78
floor (library function) 2-65
fmod (library function) 2-66
free (library function) 2-67
frexp (library function) 2-68
function = default (#pragma

directive) 1-99

INDEX

function = interrupt I (#pragma directive) 1-100 I
function = monitor

(#pragma directive) 1-101 icclbutl.h (header file) 2-39
function = non-banked iccz80 directory 1-12

(#pragma directive) 1-102 icz80 command 1-17
function = C task IDATA0 (segment) 1-133

(#pragma directive) 1-99 inc directory 1-13
include files 1-13,1-18

G initialization 1-74 G input (intrinsic function) 1-112
inputs (intrinsic function) 1-112

getchar (library input_Wock_dec (intrinsic
function) 1-71, 2-69 function) 1-112

gets (library function) 2-70 input_block_inc (intrinsic
function) 1-112

H installation 1-5 H installed files 1-9
MS-DOS 1-5

halt (intrinsic function) 1-111 UNIX 1-8
header files 2-38 Windows 1-8

ctype.h 2-38 interrupt (extended
errno.h 2-44 keyword) 1-39,1-87
float.h 2-44 interrupt functions 1-122
icclbutl.h 2-39 interrupt handling 1-39
limits.h 2-44 interrupt vectors 1-123
math.h 2-39 interrupt_mode_0 (intrinsic
setjmp.h 2-41 function) 1-113
stdarg.h 2-41 interrupt_mode_l (intrinsic
stddef.h 2-44 function) 1-113
stdio.h 2-41 interrupt_mode_2 (intrinsic
stdlib.h 2-42 function) 1-113
string.h 2-43 intrinsic function summary 1-83

heap size 1-74 intrinsic functions 1-109
hexadecimal string address_24_of 1-109

constants 2-152 disable_interrupt 1-111
dump_I_register 1-111
enable_interrupt 1-111

INDEX

intrinsic functions (continued)
halt 1-111 I V
input 1-112
input8 1-112 K&R definition v
input_block_dec 1-112 Kernighan & Richie
input_block_inc 1-112 definition 2-149
interrupt_mode_0 1-113 key features 1-1
interrupt_mode_l 1-113 keywords
interrupt_mode_2 1-113 const 2-149
output 1-113 entry 2-149
output8 1-114 enum 1-78 ,2-151
output_block_dec 1-114 signed 2-150
output_block_inc 1-114 struct 2-153
output_memory_ union 2-153

block_dec 1-115 void 2-150
output_memory_ volatile 2-150

block_inc 1-115
sleep 1-115 L _opc 1-116 L

introduction 1-1
INTVEC (segment) 1-133 labs (library function) 2-82
isalnum (library function) 2-71 language extensions 1-81,2-33
isalpha (library function) 2-72 language = default (#pragma
iscntrl (library function) 2-73 directive) 1-102
isdigit (library function) 2-74 language = extended
isgraph (library function) 2-75 (#pragma directive) 1-103
islower (library function) 2-76 large memory model 1-61
isprint (library function) 2-77 ldexp (library function) 2-83
ispunct (library function) 2-78 ldiv (library function) 2-84
isspace (library function) 2-79 lib directory 1-14
isupper (library function) 2-80 library definitions summary 2-38
isxdigit (library function) 2-81 library files 1-14

library functions
abort 2-47
abs 2-48
acos 2-49
asin 2-50
assert 2-51

INDEX

library functions (continued] library functions (continued)
atan 2-52 memchr 2-89
atan2 2-53 memcmp 2-90
atof 2-54 memcpy 2-91
atoi 2-55 memmove 2-92
atol 2-56 memset 2-93
calloc 2-57 modf 2-94
ceil 2-58 pow 2-95
cos 2-59 printf 2-96
cosh 2-60 putchar 2-101
div 2-61 puts 2-102
exit 2-62 rand 2-103
exp 2-63 realloc 2-104
fabs 2-64 scanf 2-105
floor 2-65 setjmp 2-109
frnod 2-66 sin 2-110
free 2-67 sinh 2-111
frexp 2-68 sprintf 2-112
getchar 2-69 sqrt 2-113
gets 2-70 srand 2-114
isalnum 2-71 sscanf 2-115
isalpha 2-72 strcat 2-116
iscntrl 2-73 strchr 2-117
isdigit 2-74 strcmp 2-118
isgraph 2-75 strcoll 2-119
islower 2-76 strcpy 2-120
isprint 2-77 strcspn 2-121
ispunct 2-78 strlen 2-122
isspace 2-79 strncat 2-123
isupper 2-80 strncmp 2-124
isxdigit 2-81 strncpy 2-125
labs 2-82 strpbrk 2-126
ldexp 2-83 strrchr 2-127
ldiv 2-84 strspn 2-128
log 2-85 strstr 2-129
loglO 2-86 strtod 2-130
longjmp 2-87 strtol 2-131
malloc 2-88 strtoul 2-132

vn

INDEX

library functions (continued)
tan 2-133
tanh 2-134
tolower 2-135
toupper 2-136
va_arg 2-137
va_end 2-138
va_list 2-139
va_start 2-140
_fonnatted_read 2-141

formatted write 2-142
medium read 2-144

_medium_write 2-145
_small_write 2-147

library object files 2-37
limits.h (header file) 2-44
linker 1-4
linker command file 1-61,1-62
linking a program 1-31
list file 1-19
log (library function) 2-85
loglO (library function) 2-86
longjmp (library function) 2-87

M
malloc (library

function) 1-74,2-88
math.h (header file) 2-39
memchr (library function) 2-89
memcmp (library function) 2-90
memcpy (library function) 2-91
memmove (library function) 2-92
memory map 1-127
memory models 1-61

banked 1-63
specifying 1-61

vm

memory-mapped output,
using 1-55

memory = constseg (#pragm£ i
directive) 1-103

memory = dataseg (#pragma
directive) 1-104

memory = default (#pragma
directive) 1-105

memory = no_init (#pragma
directive) 1-106

memset (library function) 2-93
miscellaneous files 1-11
modf (library function) 2-94
monitor (extended keyword) 1-89
multi-module linking 1-67

N
non-volatile RAM 1-68
non_banked (extended

keyword) 1-90
no_init (extended keyword) 1-91
N O J N I T (segment) 1-69,1-134

o
object file 1-19
optimization 1-69
output (intrinsic function) 1-113
output8 (intrinsic function) 1-114
output_block_dec (intrinsic

function) 1-114
output_block_inc (intrinsic

function) 1-114
output_memory_block_dec

(intrinsic function) 1-115

INDEX

output_memory_block_inc
(intrinsic function) 1-115

p scanf (library p function) 1-74 :, 2-105
segments 1-127

pminfo 1-20 CCSTR 1-129
pointers, using 1-55 CDATA0 1-132
pow (library function) 2-95 CODE 1-129
pragmas, using 1-57 CONST 1-130
printf (library CSTACK 1-130

function) 1-72,2-96 CSTR 1-131
putchar (library DATA0 1-132

function) 1-71 , 2-101 ECSTR 1-131
puts (library function) 2-102 IDATA0 1-133

INTVEC 1-133

Q
memory map 1-127

Q NO_INIT 1-69 , 1-134
RCODE 1-134

QCCZ80 (environment TEMP 1-135
variable) 1-20 UDATA0 1-135

setjmp (library function) 2-109

R setjmp.h (header file) 2-41 R sfr (extended keyword) 1-92
shared variable objects 2-153

rand (library function) 2-103 shell for interfacing to
RCODE (segment) 1-134 assembler 1-117
read-me files 1-8 signed (keyword) 2-150
realloc (library function) 2-104 sin (library function) 2-110
recommendations 1-79 sinh (library function) 2-111
recursive functions, using 1-56 sizeof (operator) 2-35
register set, using the sleep (intrinsic function) 1-115

alternative 1-69 source files 1-12,1-17
nninfo 1-20 path 1-19
RST vectors, using 1-70 sprintf (library
run-time library 1-60 function) 1-72 ,2-112
running a program 1-33 sqrt (library function) 2-113
running the C compiler 1-17

INDEX

srand (library function) 2-114
sscanf (library

function) 1-74,2-115
stack size 1-69
stdarg.h (header file) 2-41
stddef.h (header file) 2-44
stdich (header file) 2-41
stdlib.h (header file) 2-42
strcat (library function) 2-116
strchr (library function) 2-117
strcmp (library function) 2-118
strcoll (library function) 2-119
strcpy (library function) 2-120
strcspn (library function) 2-121
string.h (header file) 2-43
strlen (library function) 2-122
strncat (library function) 2-123
strncmp (library function) 2-124
strncpy (library function) 2-125
strpbrk (library function) 2-126
strrchr (library function) 2-127
strspn (library function) 2-128
strstr (library function) 2-129
strtod (library function) 2-130
strtol (library function) 2-131
strtoul (library function) 2-132
struct (keyword) 2-153

T
tan (library function) 2-133
tanh (library function) 2-134
target identification 2-33
TEMP (segment) 1-135
text editor 1-4
tolower (library function) 2-135
toupper (library function) 2-136

tutorial 1-23
compiling a program 1-28
configuring to suit the

target program 1-25
creating a project

directory 1-25
interrupt handling 1 -23, 1 -39
linking a program 1-31
modifying CSTARTUP 1-49
running a program 1-33
selecting a library file 1-27
simple C program 1-23,1-27
using #pragma directives 1-35
using banked

memory 1-23, 1-42
using C-SPY 1-33
using serial I/O 1-23,1-35
using the C exit routine 1-35

tutorial files 1-23

u
UDATAO (segment) 1-135
undocumented instructions,

using 1-71
union (keyword) 2-153
using (extended keyword) 1-93

V
va_arg (library function) 2-137
va_end (library function) 2-138
va_list (library function) 2-139
va_start (library function) 2-140
void (keyword) 2-150
volatile (keyword) 2-150

INDEX

w X
warning messages 2-176
warnings = default (#pragma

directive) 1-107
warnings = off (#pragma

directive) 1-107
warnings = on (#pragma

directive) 1-108

XLINK Linker 1-4
XLINK_DFLTDIR

(environment variable) 1-14

XI

INDEX

xn

