

Atari Floppy Disk
Copy Protection

Based on Key Disk

By Jean Louis-Guérin (DrCoolZic)
Revision 1.0 - November 2011

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 2 / 53

1 Table of Contents
1 Table of Contents ... 2

2 Presentation ... 4

3 Terminology used in this document ... 5

4 Copy Protection Summary Table .. 6

5 Copy Protection Detail Description .. 7
5.1 Protections based on Layout .. 7
5.1.1 Number Of Sectors (NOS) ... 7
5.1.2 Sector Sizes ... 8
5.1.3 Duplicate sector ... 8
5.1.4 Invalid Sector Number .. 8
5.1.5 Invalid ID Field ... 9
5.1.6 Invalid Data in Gap ... 9
5.1.7 Non Standard IDAM ... 10
5.1.8 Non Standard DAM .. 10
5.1.9 Sector with No Data ... 10
5.1.10 Sector with bad ID .. 11
5.1.11 Sector with bad Data .. 11
5.1.12 Data Field Over Index-pulse .. 12
5.1.13 Data Field Beyond Index-pulse .. 13
5.1.14 Extra Tracks ... 14
5.1.15 Missing Tracks ... 14
5.1.16 Data into GAP .. 14
5.1.17 Invalid Synch-mark Sequence ... 15
5.1.18 Synch Mark in Data .. 15
5.1.19 Track Layout Pattern .. 15
5.1.20 Invalid Track Number ... 16
5.1.21 Sector Within Sector .. 16
5.2 Protections based on Fuzzy Bits .. 17
5.2.1 Fuzzy bits in Data ... 17
5.2.2 Fuzzy Bits in ID .. 17
5.2.3 Flux Reversals in Ambiguous Area .. 18
5.2.4 MFM Timing Violation .. 18
5.2.5 No Flux reversals Area... 19
5.2.6 Weak Bit ... 19
5.3 Protections based on Bit-rate Variation .. 20
5.3.1 Long / Short Sector .. 20
5.3.2 Long/Short Track .. 21
5.3.3 Intra-Sector Bit-rate Variation .. 21
5.4 Protections based on Track Alteration .. 22
5.4.1 Physical Alteration of Track ... 22

6 Atari Low-Level Formats ..23
6.1 “Standard” 9-10-11 Sectors of 512 Bytes Format ... 24
6.2 “Standard” 128-256-512-1024 Bytes / Sector Format ... 25

7 WD1772 Floppy Disk Controller ...26
7.1 WD1772 DPLL Input Circuitry ... 26
7.2 WD1772 Detection of Fuzzy Bits .. 28

8 Analysis of Games/Programs ..29
8.1 Dungeon Master (FTL Inc.) .. 30
8.2 D50 Editor (DrT) .. 32
8.3 Populous (Electronic Arts) .. 34
8.4 Theme Park Mystery (Image Works) .. 36
8.5 Computer Hits Volume 2 (Beau-Jolly) .. 38

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 3 / 53

8.6 Kick Off 2 (Anco Software) .. 41
8.7 Night Shift ... 43
8.8 Barbarian .. 46
8.9 Colorado ... 47
8.10 Turrican ... 48
8.11 Operation Neptune ... 50

9 References ..51
9.1 Documents / Articles ... 51
9.2 Forums Threads ... 51
9.3 Related Patents .. 52
9.4 Web Sites .. 52
9.5 FDC & Related Information ... 52

10 Document history ...53

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 4 / 53

2 Presentation
This document is meant to describe most of the floppy disk protection mechanisms used
on the Atari platform. This type of copy protection is very old and, with many years of
development and the usage of sophisticated floppy disk hardware, has conducted to
numerous protection methods frequently referred as key disk protection. The key disk
protection method has at least two obvious qualities: first, a key disk can be simultaneously
used as protection and distribution disk and second, this type of protection is very cheap but
nevertheless hard to tamper with. So, key disks have been widely used for protection of Atari
programs/games. In order to understand the key disk based protection, one is assumed to
have some basic knowledge about FD/FDC data and operation.

Some of the FD protection mechanisms are generic to many platforms while some are
directly related to a specific FD Controller used on a specific platform. Therefore, in order to
get a general understanding, I have reviewed the FD protections mechanism used on several
platforms: Amiga, Commodore C64, PC, Tandy, Atari 8 bits and Atari ST 16 bits (see the
references section).

A lot of information about the different copy protection mechanisms presented here has been
collected from the Web. Links to the original information / Web sites can be found at the end
of this document in the references section.

In order to validate this document, I have analyzed the protections of many original floppy
disks using four specific programs that I have developed for this purpose:
 For basic protection analysis I have created a program running on Atari called Panzer

(Protection ANalyZER) that automatically detects and reports most of the protections
(see the protection summary table). This program also provides the capability to analyze
and report detailed sectors and tracks information (including track and sector timing). For
more information please refer to the Panzer documentation.

 The second program is similar to Panzer but is running on PC and is using Stream files
produced by the KryoFlux board as input. Due to the detail content of the Stream Images
(down to the flux revedrsal level) it is possible to provide much more accurate detections
of protections especially those related to timing like the bit cell variation. The program is
called KFPanzer (KryoFlux stream based Protection ANalyZER). For more information
please refer to the KFPanzer documentation.

 For detailed analysis of timing information, I have created a program, called Analyze,
running on Atari and PC. This program reads files produced on an Atari by the Discovery
Cartridge and performs a detailed analysis of the flux reversals read from a diskette.
This program takes its root in experiments I have done back in the 80s! The program is
now in maintenance mode and is replaced by the KFAnalyze program presented below.

 The last program reads input Stream files generated by the KryoFlux board. The Stream
files provide detail information (at the flux reversals level) about Atari FD content (more
information in the references section). This program is called KFAnalyze and is a
complete redesign in C++ of the Analyze program. The heart of this program is a
Western Digital WD1772 Floppy Disk Controller emulator. This emulator (that implements
a full DPLL data separator) provides functions equivalent to the read track, read
address, and read sector commands directly from the flux reversals read from the input
Stream files. Therefore it is possible to process the Stream information as if we were
reading with an Atari WD1772 FDC but with a lot of extra information especially on
timing. For more information please read the KFAnalyze documentation

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 5 / 53

Intent of this document is also to provide enough information on the key disk protection
mechanisms to help in the creation of techniques/programs for duplication and/or
preservation of original Atari diskettes with the following philosophy:

A backup/duplication technique should always do the most to ensure the integrity
of the resultant copy. The copy produced should operate just like the original and
not remove any protection, or modify the program being copied in any way. The
backup/duplication technique must do the up most to check that the copy
produced is identical to the original.

Duplication is possible without special HW for many of the protections presented here (many
copy programs have been designed for that), but more advanced protections require using
dedicated HW like the Discovery Cartridge or the recently released KryoFlux Device.
Analog copiers, like the Blitz cable and associated software, can sometime create a working
copy of a protected diskette but they do not fulfill the above requirements of producing a
copy identical to the original.

It is interesting to note than an “emulator preservation program” (like Pasti) do not care as
much about (and sometimes can’t detect) the exact underlying protection mechanism used.
Such program is mostly interested in storing enough information so that an emulator would
be able to emulate the effect of a specific protection. For example this kind of program will
detect the presence of fuzzy bytes/bits but it will not care if they are caused by bits in
Ambiguous areas, bits rate violation. As a matter of fact finding the exact underlying causes
often requires specific hardware like a Discovery Cartridge or KryoFlux device. I have
added, for each of the protection mechanism presented in this document, a section (called
Preservation:) that describes a possible way of “preserving” the necessary information.
Generally, for an emulator, you need to store some or all of the following information for each
tracks to preserve:

 The track layout and content
 The content of all the sectors (even fake ones),
 Timing information for sector, track, and even bytes
 Fuzzy bytes information.

I want to thanks to many people on Atari forum for taking time to discuss some of the
protections presented here.

3 Terminology used in this document
In the FD literature different terms are often used to designate the same thing! In this
document I use the following terminology (a more complete definition is given in the section
“Atari Low-level formatting” section):

A diskette has two sides read by two heads. Each side is composed of concentric tracks.
Each track is made up of several sectors (or records). Each Sector contains several fields
(or blocks) called: The Gaps (GAP1, GAP1a, GAP2, GAP3a, GAP3b, GAP4, and GAP5),
the SYNCH bytes followed by an Address Marks (IAM, IDAM, DAM, and DDAM), the ID
fields, and of course the Data fields.

22 x 4E 40 x 4E12 x 00 3 x A1 DAM FB or
DDAM F8 User Data 512 Bytes CRC1 CRC 212 x 00 3 x A1IDAM FE Track # Side # Sect # Size CRC1 CRC 2

Write Gate

ID Segment

ID Field ID postamble Data preamble Data Field Data postambleID preamble

Data Segment

http://www.atari-forum.com/index.php
http://www.atari-forum.com/viewtopic.php?t=9012

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 6 / 53

4 Copy Protection Summary Table
The following table summarizes the copy protections reviewed in this document:

NAME PZ1 KPZ2 CAREGORY
Number Of Sector NOS NOS Layout / Track
Sector SiZes SSZ SSZ Layout / Track
Extra Tracks EXT EXT Layout / Track
Missing Tracks TNF TNF Layout / Track
Data Into GAP 3 3 Layout / Track
Invalid Data in Gap IDG IDG Layout / Track
Invalid Synch-mark Sequence ISS ISS Layout / Track
Track Layout Pattern Layout / Track
Duplicate Sector Number DUP DSN Layout / Sector
Invalid Sector Number ISN ISN Layout / Sector
Invalid ID Field IIF IIF Layout / Sector
Non Standard IDAM NSI NSI Layout / Sector
Non Standard DAM NSD Layout / Sector
Sector with No Data SND SND Layout / Sector
Sector with Bad ID SBI SBI Layout / Sector
Sector with Bad Data SBD SBD Layout / Sector
Data Over Index-pulse DOI DOI Layout / Sector
Data Beyond Index Pulse DBI DBI Layout / Sector
Synch Mark in Data SID Layout / Sector
Invalid Track Number ITN ITN Layout / Sector
Sector Within Sector SWS SWS Layout / Sector
Fuzzy bits in Data FZD FZD Fuzzy / Sector
Fuzzy bits in ID FZI ? Fuzzy / Sector
Flux rev. in Ambiguous Area 4 FAA4 Fuzzy / Sector
MFM Timing Violation 4 MTV4 Fuzzy / Sector
No Flux reversal Area 4 NFA4 Alteration / Track
Long / Short Sector LGS/SHS5 LGS/SHS5 Bit Variation / Sector
Long/Short Track LGT/SHT Bit Variation / Track
Intra-sector Bit-rate Variation IBV IBV Bit Variation / Sector
Physical Alteration of Track ? ? Alteration / Track

Note that several protections’ mechanisms can be combined and that some protection
always implies other protection (e.g. fuzzy bit always results in CRC error).

1 Protections detected by Panzer and reported with the indicated name.
2 Protections detected by KFPanzer and reported with the indicated name.
3 Data into gap is not detected but you should look for it whenever an ISS is found.
4 Results in Fuzzy bits and therefore reported as FZD or FZI
5 Reported as LGS is for Long Sector, and SHS is for Short Sector

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 7 / 53

5 Copy Protection Detail Description
In this section I provide a detailed description of the different protection’s mechanisms used
in Atari Key disks. The protections have been grouped into four categories. The following
taxonomy is used:

 Protections based on Layout
 Protections based on Fuzzy Bits
 Protections based on Bit-rate Variation
 Protections based on Alteration

5.1 Protections based on Layout
This category contains all the protections that are based on the layout’s modification of one
or several track/sector compared to a “standard track” of a “normal diskette”.

A “standard track” on an Atari is composed of 9 sectors each with 512 bytes of data
sequentially numbered starting with sector 1 until sector 9.

A “normal diskette” has one (i.e. single sided) or two sides (i.e. double sided) and 80 tracks
numbered from 0 to 79. A more detailed description of standard and non-standard format can
be found in the Atari double density floppy diskette section.

However it is not uncommon to use diskettes with up to 11 sectors and more than 80 tracks
as it allows packing more data. A good duplication/imaging program should be able to detect
and reproduce all these variants and therefore they are not really considered as protection. A
special care should be taken for diskettes with 11 sectors / track as the track timings are in
this case extremely tight.

Beyond this basic modification of the layout we also find in this category some very advance
protections. Some of them are difficult to detect (so that a copy program would not easily find
them) and some of them are difficult to reproduce without special hardware.

5.1.1 Number Of Sectors (NOS)
 Description: The standard Atari FD format uses tracks of 9 sectors each containing data

blocks of 512 bytes. However many games use 10 or even 11 sectors per tracks just to
pack more data on the diskette.
 Tracks with 11 sectors push several of the parameters that can be handled by the

WD1772 FDC close to their limits. This is especially true considering that a 3%
rotation’s speed variation is by definition possible when reading a diskette. These
tracks are therefore often referred as “read only” tracks.

 Tracks with 12 or more sectors clearly indicate that some “tricks” have been used as
12 real sectors won’t fit on a track. Usually these tracks use the Sector within Sector
protection.

 Tracks with less than 9 sectors are not standard and are often combined with sector
of size 1024. However alone they are not considered as a protection.

 Creation: It is quite easy to format a track with a non-standard number of sectors up to
11. This can be done by sending the appropriate data to the FDC using a write-track
command.

 Detection: with a read-address command.
 Duplication: Can easily be done in software for a number of sectors per track up to 11.
 Preservation: The preservation file just needs to store the data information for all the

sectors of the track using standard read-sector commands.
 Examples: Computer Hits Volume 2 (Beau-Jolly) uses 11 sectors / track, Theme Park

Mystery (Image Works) uses 12 sectors / track.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 8 / 53

5.1.2 Sector Sizes
 Description: Normally all tracks have sectors with a Data Field of 512 bytes long. It is

possible to create a track with different data field size (usually a mixture of 512 and
1024)6. A common example is to have a track with 9 sectors of 512 bytes and a tenth
sector with a data field size of 1024 bytes. This is a more reliable approach to increase
the overall capacity of a track rather than using 11 sectors of 512 bytes. Non-standard
sector size is normally not used as a protection but just to pack more data.

 Creation: It is quite easy to format track with mixed sector sizes by sending the
appropriate data to the FDC during a write-track command.

 Detection: Can easily be done with a read-address command.
 Duplication: Can easily be done by software.
 Preservation: The preservation file just needs to store the data information for all the

sectors of the track using standard read-sector commands.
 Examples: Turrican uses tracks with a mixture of sector with 1024 and 512 bytes, Kick

Off 2 (Anco Software 1990) uses tracks with mixture of 1024 and 512 bytes sectors.

5.1.3 Duplicate sector
 Description: A track where, two or more, sectors use the same sector number. Using

blindly a read-sector command, for this duplicated sector, may return random data
values. This is due to the fact that the FDC will access randomly one of these duplicated
sectors (with different content) based on current head position. However it is possible to
read a specific sector, among the duplicated sectors, by using a read-sector command
delayed by a specific amount of time from the index pulse.

 Creation: It is quite easy to format a track with duplicate sectors by sending the
appropriate data to the FDC during a write-track command.

 Detection: Can easily be done by using a read-address or a read-track command.
 Duplication: Can easily be done by software.
 Preservation: Beyond keeping the standard information for all the sectors it is also

necessary to store the presence of duplicate sector.
 Example: Night Shift (US Gold) uses a duplicated sector numbered 66. These duplicated

sectors also use the no data block protections.

5.1.4 Invalid Sector Number
 Description: During the format command any character loaded into the data register of

the WD1772 is written to the disk with a normal clock pattern. However the characters
$F5 and $F6 are used to write respectively the Synch Characters $A1 and $C2 with a
missing clock transition. The character $F7 is used to generate two CRC bytes. This
implies that it is not possible to create a sector with an ID ranging from 245 through 247
($F5-$F7). Note that the WD1772 documentation indicates that the sector number should
be kept in the range 1 to 240 but in fact any values outside the range indicated above
(245-247) works.

 Creation: It is not possible to create a sector with an ID in the range of 245-247 with the
WD1772 FDC and therefore creating such ID Field requires a special hardware.

 Detection: Can easily be done with a read-address command.
 Duplication: Requires special hardware.
 Preservation: The sector with an invalid number is read as a normal sector by a read-

sector command and it just needs to be stored in the preservation file like any other
standard sector.

 Example: Dungeon Master (FTL Inc.) use a sector number of 247 ($F7) on track 0

6 Note that several of the BIOS calls will not work for sectors with size different than 512.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 9 / 53

5.1.5 Invalid ID Field
 Description: An ID Field contains a Track Number, a Side/Head Number, a Sector

Number, a Sector Length, and two CRC bytes. During a read-sector command when an
ID Field is located on the disk, the WD1772 compares the Track Number of the ID Field
with its internal Track Register. If there is not a match, the next encountered ID Field is
read and a comparison is made again. If there is a match, the Sector Number of the ID
Field is compared with its internal Sector Register. If there is no Sector match, the next
encountered ID Field is read off the disk and a comparison is made again. If the ID Field
CRC is correct, the Data Field is located and an internal register is loaded with the Sector
Length. It is therefore possible to create a track with an invalid ID field. As Invalid Track
Number and Invalid Sector Number protections are widely used they are treated
separately. Therefore here we will only consider ID field with an invalid Side/Head
Number (i.e. not equal to 0 or 1) or an invalid Sector Length (i.e. not in range 0-3).
TO BE VERIFIED: (not sure of the behavior of FDC with invalid sector length or Side #)

 Creation: It is possible to write invalid values for the Side Number and/or for Sector
Length of an ID Field by sending the appropriate data to the FDC during a write-track
command.

 Detection: Can easily be done with a read-address command.
 Duplication: Can easily be done by software
 Preservation: The exact content of the invalid ID field need to be saved in the

preservation file.
 Example: Colorado Track 1 (Track=14, Head=164, Sector=150, Size=132) ??? To be

verified

5.1.6 Invalid Data in Gap
 Description: During the format command any character loaded into the data register of

the WD1772 is written to the disk with a normal clock pattern. However the characters
$F5 and $F6 are used to write the Synch Marks and the character $F7 is used to
generate of two CRC bytes. This implies that it is not possible to have a character
ranging from 245 through 247 ($F5-$F7) inside any of the GAPs7. Reading these
characters into GAPs requires using a read-track command. In order to read these
invalid characters correctly with the read-track command it is recommended to precede
them with one or several synch character.

 Creation: It is not possible with the WD1772 to write a character within the range 245-
247 in any GAP. Therefore writing any of these characters into GAPs requires special
hardware.

 Detection: Can easily be done with a read-track command.
 Duplication: Require special hardware.
 Preservation: It is necessary to save the content of the track in the preservation file.
 Example: Operation Neptune Track 50, Dragon Flight (???)

7 Note that it is not possible to modify the GAP2 or GAP3b ($00) as these gaps are required
by the FDC to synchronize properly. Therefore writing invalid bytes must be done in GAP1
and/or GAP3a and/or GAP4

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 10 / 53

5.1.7 Non Standard IDAM
 Description: The normal IDAM (ID Address Mark) used by the WD1772 is the character

$FE which is sent after a synch sequence of 3 $A1 synch marks. An undocumented
feature of the WD1772 is to accept the character $FF as an IDAM8.

 Creation: During a write-track command it is possible to use $FF instead of the normal
$FE IDAM character.

 Detection: As the read-address command and the read-sector command execute
normally it is easy to hide the fact that a non-standard IDAM has been used. Detection
can either be done through a read-track command or with the read-address command.
In both cases you have to look for an $FF character instead of $FE in the ID field. Note
that the ID Field reads with no CRC error.

 Duplication: Once detected this protection is easy to duplicate.
 Preservation: Requires storing the exact ID field or the track information in the

preservation file.
 Example: Colorado track 1 has an extra ID Field with $FF IDAM. However the ID Field

has also a CRC error and I am not sure if this is used as a protection?

5.1.8 Non Standard DAM
 Description: The normal DAM (DATA Address Mark) used by the WD1772 is either the

character $FB for normal data and $F8 for deleted data which is sent after a synch
sequence of 3 $A1 synch marks. An undocumented feature of the WD1772 is to accept
the character $FC/F9 as a DAM9.

 Creation: During a write-track command it is possible to use $FC or $F9 instead of the
normal $FB or $F8 DAM character.

 Detection: As the read sector command execute normally it is easy to hide the fact that
a non-standard DAM has been used. Detection can be done through a read track
command where you have to look for a $FC/F9 character instead of $FB/F8 in the header
of the DATA field. Note that the DATA Field reads with no CRC error.

 Duplication: Once detected this protection is easy to duplicate.
 Preservation: Requires storing the track information in the preservation file.
 Example: ???

5.1.9 Sector with No Data
 Description: A sector with an ID Field not followed by a Data Field.
 Creation: It is quite easy to format a sector of a track with an ID field not followed by a

Data Field. This is done by sending appropriate data to the FDC during a write-track
command.

 Detection: This kind of sector is found using a read-address command, but is not found
using a read-sector command. This is because during the read-sector command the
FDC expects to find a DAM/DDAM within 43 bytes from last ID Field CRC byte, if not the
sector is searched again for 5 revolutions and the command is terminated with the
Record Not Found (RNF) Status bit set.

 Duplication: Can easily be done by software.
 Preservation: Requires storing the track information in the preservation file.
 Example: Night Shift (US Gold) uses duplicate sectors 66 both of them having No Data

fields

8 Note that, in MFM, for the marks characters between $F8 and $FF the least significant bit is
always ignored by the FDC and therefore : $F8 = $F9, …, $FE = $FF
9 Note that, in MFM, for the marks characters between $F8 and $FF the least significant bit is
always ignored by the FDC and therefore : $F8=$F9, …, $FE = $FF

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 11 / 53

5.1.10 Sector with bad ID
 Description: A sector that has a CRC error in the ID Field. This results in a sector that

cannot be read by the read-sector command.
 Creation: Easy with the write-track command. For example by sending 2 normal bytes

(e.g. $00, $00) at the end of the field instead of one "Write CRC" character ($F7).
 Detection: It is possible to read this kind of sector with a read-address command and to

verify that it has a wrong CRC. But it is not possible to read the sector with a read-sector
command. A read-track command can be used to read the data, but keep in mind that
the read-track command cannot read reliably a data sector and that the CRC is not
verified (see Synch character in Data Field).

 Duplication: Can easily be done by software
 Preservation: Requires storing the ID field and/or the track information in the

preservation file.
 Example: ???

5.1.11 Sector with bad Data
 Description: A sector that has a CRC error in its Data Field.
 Creation: Easy during write-track command by using the same mechanism as

described above.
 Detection: Can easily be done using a read-sector command. The data sector is read

normally but the CRC error status bit is set at the end of the command.
 Duplication: Can easily be done by software
 Preservation: The content of the sector should be stored as normal but a CRC error

indicator must be added to the preservation file.
 Example: Populous

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 12 / 53

5.1.12 Data Field Over Index-pulse
 Description: A sector where the Data Field span “over the index hole”. Normally all

sectors of a track should end up before the index pulse. Yet it is possible to create a track
with a total length that is slightly more than what a normal track can hold. This results in
the last sector “wrapping around” the beginning of the track. As there is a small area at
the beginning of track (the post-index GAP), which is not used for storing data, it is
possible to overwrite partially this section of the track. But if we want the track to look like
a standard track the overlap should not be too large otherwise the IDAM of first sector will
be erased. However it is also possible to create a totally non standard layout for the track
where we actually literally shift the track in respect to the index pulse. In this case it is
possible to have a Data Field almost completely placed at the beginning of the track (like
in Kick Off 2)

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a normal track

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a track with Data Over Index

 Creation: As mentioned above it is possible to create a “long track” with a total length

that is slightly more than what a normal track can hold (usually about 10 to 20 bytes).
This result in the header of the last track sector to be placed close to the end of the track.
The write-track command of the WD1772 FDC starts with the leading edge of the index
pulse and continues until the next index pulse. Therefore the last sector of a “long track”
will be truncated during the format operation. However the write-sector command on
this truncated sector will execute normally and this will result in data being written beyond
the index pulse.

 Detection: The last sector passes over the index pulse but it is read normally by the
read-sector command. It is therefore necessary to use a read-track command to find
out that the last sector actually spread over the beginning of the track.

 Duplication: Data Field passing over IAM can cause significant problems for copier
unaware of their existence. Dumb copy will not result in correct sector position and
therefore this protection has been used extensively used on Atari. However once
detected the duplication of such sector is easy by formatting correctly the track.

 Preservation: Requires storing the track information in the preservation file.
 Example: Kick Off 2 places almost all the data of one sector at the beginning of a track.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 13 / 53

5.1.13 Data Field Beyond Index-pulse
 Description: A sector where the ID Field is placed at the very end of a track and the

corresponding Data Field is at the very beginning of the same track. This is an extreme
variation of the Data Over Index protection. Normally all sectors of a track should end up
before the index pulse. Yet it is possible to create a track where the ID Field for the last
sector is placed at the very end of the track with the corresponding Data Field placed at
the very beginning of this same track. You have to remember that the Data Address Mark
of the Data Field is to be found within 43 bytes from the last ID Field CRC byte and
therefore placement of the ID Field and corresponding Data Field in the track is critical.
This results in the last sector “wrapping around” the beginning of the track. See Computer
Hits Volume 2 for an example.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a normal track

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4 G1

Sector n

Sector positions relative to the index pulse for a track with Sector Over Index

 Creation: This is done by creating a special layout for the track: the track needs to start

with a Data Field (very close to beginning of track) then followed by a set of nine or ten ID
Field and Data Field and terminated by an ID Field very close to the end of the track.

 Detection: The last sector has the ID Field before the index pulse and the Data Field
after the index pulse but it is read normally by the read-sector command. It is therefore
necessary to use the read-track command to find out that the last sector actually spread
over the beginning of the track.
Important note: The DMA can only transmit multiple of 16 bytes from the FDC.
Therefore during a read-track command, one or several of the last bytes (always less
than 16) may not be transferred by the DMA. Consequently it is possible that a read-
track does not transmit the ID Field (or transmits it partially) when it is placed at the very
end of a track. However the FDC read-address and read-sector commands will find this
ID field and interpret this sector correctly.

 Duplication: Sector passing over IAM can cause significant problems for copier unaware
of their existence. Dumb copy will not result in correct sector position. I believe that it is
almost impossible to reliably place an ID field at the very end of the track by software
due to floppy drives rotation speed variation. Therefore this protection requires most
probably some specific hardware.

 Preservation: Requires to store the track information, but as the last address field might
not be read correctly it also requires to store all the sector IDs

 Example: Computer Hits Volume 2 (Beau-Jolly)

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 14 / 53

5.1.14 Extra Tracks
 Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each

side. It is possible to go beyond this value up to 82 tracks with good reliability and even
more with a lower reliability. It is also possible to “hide” one or several tracks on the
second side of an “officially” (as specified in the boot sector) single sided diskette.

 Creation: It is quite easy to create extra track by sending appropriate information to the
FDC during the write-track command. Be aware that some early Atari drives cannot
position the head past track 79 and that they will write the data for tracks 80 and over on
track 79. Also beware that using tracks over 82 has been reported to damage some
floppy drives.

 Detection: You have to probe the diskette to check if some extra tracks exist (probing for
82 tracks is usually sufficient). For Single Sided diskette, try to probe for hidden track on
second side.

 Duplication: Easy by software.
 Preservation: Store information for the extra tracks.
 Example: Passengers on the Wind (Infogrames) uses tracks 80 & 81.

5.1.15 Missing Tracks
 Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each

side. It is possible that not all of these tracks are formatted. However creating non
formatted track is not as simple as it seems as most diskettes are sold preformatted.

 Creation: On a non-formatted diskette you only format the tracks needs to be formatted!
On a preformatted diskette you need to mimic unformatted tracks by writing, for example,
random data to those tracks?

 Detection: A seek command with the verify option should fail on unformatted track.
Alternatively you can perform a read-track and look for inconsistent data. Note that it is
also possible to hide data at the end of an “officially” unformatted track.

 Duplication: If only the presence of an invalid track is tested then it is easy to reproduce
by software. Placing specific data at end of an otherwise unformatted track is more
difficult to detect.

 Preservation: The preservation file should have some indicators for missing tracks.
 Examples: Barbarian Psygnosis (Track 74 – 79 missing), Run the Gauntlet (Ocean

Software), Kick Off 2

5.1.16 Data into GAP
 Description: It is possible to write data in the post ID Gap (Gap of 22 bytes) or in the

post DATA Gap (Gap of 40 bytes) as well as in the pre and post index GAP (respectively
664 and 60 bytes on standard diskettes). See “copy me I want to travel” from Claus Brod
for a complete explanation and some interesting examples.

 Creation: Extra data can be written into Gap only during the write-track command. It is
recommended to use Synch Marks in front of the data to be able to read them correctly
(although reading pseudo random value may be part of the protection).

 Detection: You need to use a read-track command to be able to read the inter-sector
information. But it is not easy to find this information as you do not know what and where
to look for. Therefore some heuristic need to be used (e.g. presence of synch marks into
GAP).

 Duplication: Although it is difficult to detect, it is easy to reproduce with the write-track
command.

 Preservation: Requires storing the track information in the preservation file.
 Example: Barbarian Psygnosis (end of Track 0) ?

http://www.clausbrod.de/cgi-bin/view.pl/Atari

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 15 / 53

5.1.17 Invalid Synch-mark Sequence
 Description: Normally Synch mark should always be in a sequence of 3 Synch Marks (3

$A1or 3 $C2) and should always been followed by an Address Mark (IAM = $FC, IDAM =
$FE, DAM = $FB, or DDAM = $F8). Therefore having a sequence of 3 Synch Marks not
followed by an AM is considered as an abnormal condition. Note that such sequence
can usually be used to synch up the data separator to read data into gap. But it is also
abnormal to have one isolated Synch Mark. However reading only two Synch Marks with
a read-track command is usually normal as usually the first Synch Mark is not read
correctly.

 Creation: It is quite easy to create an invalid synch mark sequence during format by
sending appropriate information to the FDC using the write-track command.

 Detection: Only possible with the read-track command as the read-sector command
just ignore invalid synch mark sequences.

 Preservation: Requires storing the track information in the preservation file.
 Duplication: Easy by software.
 Example: Barbarian Psygnosis (one Synch alone on Track 0, series of Synch on Track

48)

5.1.18 Synch Mark in Data
 Description: This is not a protection per se but it can be used as an indicator: During a

read-sector command the Synch Mark Detector of the WD1772 is disabled but during a
read-track command the Synch Mark Detector is active at all time. For specific sequence
of data bits during a read-track the detector detects a $C2 synch mark resulting in a shift
of the following bits/bytes. This “feature” can be used to hide some information inside a
Data Field (see “copy me I want to travel” from Claus Brod for examples).

 Creation: You have to write a specific sequence of bits, known to create a false $C2
synch mark, within a Data Field during a write-track command. Note that these
sequences rely on a poorly defined $C2 Synch Mark and are well known and described
in many places.

 Detection: Read with a read-sector command, then read with a read-track command
and compare the returned data.

 Preservation: Requires storing the track information in the preservation file.
 Duplication: Easy by software.
 Example: Turrican (shift to clock bits)

5.1.19 Track Layout Pattern
 Description: With the WD1772 FDC it is possible to fully control the layout of a track by

playing with the width of the gaps used during formatting. With this technique it is
possible to create equivalent gaps of different lengths in different position of the track
(e.g. vary the length of the GAP4 placed between the different sectors). It is therefore
possible to create a track with a specific layout pattern different from the standard
pattern. This is a sort of FD watermarking technique. If a program is not looking for this
specific protection it will read correctly the track, but will miss the pattern information.

 Creation: It is quite easy to format a track with specific different values for each GAPs by
sending the appropriate information to the FDC during the write-track command.

 Detection: Measure the layout of the different fields of the track using the read-track
command and look for a specific pattern. Note that some tolerance needs to be taken in
account as the number of bytes reported for a specific gap may vary slightly from read to
read.

 Duplication: Once detected it is easy to duplicate by software.
 Preservation: Requires storing the track information in the preservation file.
 Example: ???

http://www.clausbrod.de/cgi-bin/view.pl/Atari

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 16 / 53

5.1.20 Invalid Track Number
 Description: A track that has one or several sectors with ID Fields that contains a track

number different from the actual track number. In order for the type I commands (e.g.
seek) to succeed, on such a track, the verify bit has to be reset. Otherwise the FDC
check that at least one sector has the correct track number. The read-sector command
using “standard” parameters will also fail.

 Creation: Using a write-track command with incorrect track number in one or several ID
Field.

 Detection: The read-sector command compares the track number of the ID Field with
the track register if this matches it then compares the sector number of the ID Field with
the sector register. If any compare operation fails the FDC retry 5 times then terminate
the command with a record not found (RNF) error. Reading this kind of sector is possible
but requires playing with the FDC registers (i.e. loading the track register with the invalid
track value).

 Duplication: Easy by software
 Preservation: The preservation file should store the exact ID block.
 Example: Virus

5.1.21 Sector Within Sector
 Description: The principle is to put a sector (or usually only a fraction of a sector) inside

another sector. The normal layout of a sector has the following fields in sequence:
 GAP2, ID Field, GAP3, Data Field, and GAP4.
In this protection, the data placed inside the Data Field of the including sector contains at
least a GAP2, an ID Field, a GAP3, and a Data Field. If both sectors use a data block of
the same size then the included Data Field is obviously truncated and terminates
prematurely. If the including sector has a data block of size 1024 and the included sector
a data block of size 512, the included sector can, in that case, fit completely. This works
well because during a read-sector command the synch mark detector of the WD1772 is
shutdown. A detailed explanation of this protection can be found in the Theme Park
Mystery example. An even more complex variant of SWS is to have a sector within
another sector which is itself located within another sector. Even with such a complex
layout it is possible to read correctly the “included sector”! For an example of SWS-WS-
WS look at Computer Hits Volume 2. When you read a data block the FDC disables
further re-syncs. Therefore it is possible to have a data block included that is shifted by a
bitcell and synced properly, in that case you'd be able to read data bits as well as clock
bits as in Turrican.

 Creation: It is possible to create such a track by sending the appropriate information to
the FDC using the write-track command.

 Detection: The read-address command works fine on both the containing and the
contained sectors and the read-sector command may or may not fails on the contained
sector and may or may not fail on the containing sector. Usually look for this protection
when a track has a number of sector equal or exceeding 12. To confirm this protection
you need to use a read-track command and decipher the information. Another
alternative is to check the data inside the containing sector’s Data Field and look for
GAP2 followed by an ID Field etc. However beware that this will not always work due to
the way the FDC works. For example it is not possible to find the ID and DATA field of
sector 16 inside sector 0 of track 2 of Computer Hits Volume 2 (Beau-Jolly).

 Duplication: Easy by software? (to be verified)
 Preservation: Once the protection is detected the preservation program should store the

track layout and store the information about the different including and included sectors
and if they read correctly or not (CRC).

 Example: Theme Park Mystery , Computer Hits Volume 2 (Beau-Jolly), Turrican, Nitro
Boost Challenge (Codemasters)

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 17 / 53

5.2 Protections based on Fuzzy Bits
Fuzzy bits are known under many names: weak bits, wandering bits, flaky bits, flakey bits,
phantom bits, etc. Weak bits is the most commonly used, however I find it misleading (as
there is usually no weakness in weak bits) and therefore I prefer to use the term Fuzzy bits
that does not infer any underlying cause but clearly indicate the “fuzziness” of the returned
data. Although fuzzy bits can be created by using different techniques the result is always the
same: a byte containing fuzzy bits (also referred as a fuzzy byte) will be read with different
values for different read commands. Fuzzy bytes can be located at any place of a track.
However fuzzy bytes are usually used in a data field of a sector and in that case the data
returned will differ at each read sector command (see Fuzzy bits in Data). But fuzzy bits can
also be used in the ID field (see Fuzzy Bits in ID). As we will describe below the fuzzy bytes
can be created by using Flux reversals in Ambiguous Area, Bit Cell Timing Violation, or
Weak Bit but for emulation purpose it is usually not necessary to know the underlying cause.

5.2.1 Fuzzy bits in Data
 Description: The flowchart on the right describes a copy

recognition routine that tests for fuzzy bytes in the data
field (patent 4,849,836). The protected sector that contains
fuzzy bytes is read several times and randomness of the
returned data is checked. If the same data is read several
times on the protected sector the program is not executed.
Very often, as in Dungeon Master, the protection is verified
several times during execution of the game/program. The
detection mechanism should also test that the random
values returned are not due to usage of simple tricks like
duplicated sectors.

 Creation: Please refer to Bits in Ambiguous Area, MFM
Timing Violation, and Weak Bit for the creation on Fuzzy
data fields.

 Detection: By reading the same fuzzy data several times
and checking that returned data are random. See the
generic description.

 Duplication: Difficult and requires special hardware (i.e.
the Atari WD1772 cannot be used to copy this kind of
sector). Analog or digital copiers can be used but, as
usual, digital copier should be preferred.

 Preservation: The preservation file should have an
indicator to record the fact that a track has a Fuzzy data
sector. It is probably a good idea to store as well the
position of the first and last different byte in the sector.
Usually the 32 bytes at the beginning and at the end of the
sector are always read correctly.

 Example: refer to Flux reversals in Ambiguous Area, MFM Timing Violation, Weak Bit

5.2.2 Fuzzy Bits in ID
 Description: What has been described for Data Field can also apply to ID Fields. A fuzzy

ID field contains some fuzzy bits that will result in random values for different reads and
in most cases a CRC error.

 Creation: Please refer to Flux reversals in Ambiguous Area, MFM Timing Violation, and
Weak Bit for the creation on Fuzzy ID Fields.

 Detection: By reading the same fuzzy ID (i.e. ID that contains fuzzy bits) several times
and checking that returned data are random. See the generic description. This protection
causes some interesting programming problem in order to read correctly the addresses
and the sectors.

START

Store read data

count = 0

Read copy
protected sector

count++

Read copy
protected sector

same data

count > n

Execute Program

END

YES
NO

NO

YES

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 18 / 53

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of sector). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Preservation: The preservation file should have an indicator to record the fact that a
track has a Fuzzy ID sector.

 Example: refer to Flux reversals in Ambiguous Area, MFM Timing Violation, Weak Bit

5.2.3 Flux Reversals in Ambiguous Area
 Description: These fuzzy bits are obtained by “placing” certain flux reversals in so called

“Ambiguous areas” i.e. at the border of the inspection window. As described above these
kinds of fuzzy bits can be used in Fuzzy bits in Data or Fuzzy bits in ID.

 Creation: These fuzzy bits are obtained by placing the bit flux reversals in “Ambiguous
areas”. More precisely the bit reversals are placed in locations that will confuse the DPLL
(Digital Phase Lock Loop) of the data separator resulting in random values read (i.e.
sometimes 0, sometimes 1). This is obtained by positioning the bit reversals at the
border of the inspection window (more detail here). In that case the data separator will
return random values due to small variation of the drive rotation speed. In the US patent
“Copy Protection for computer Disc 4,849,836” one of the techniques to create fuzzy bits
consists in having bit reversals gradually sliding in and out of the inspection window
border. Of course creating this kind of reversals requires special hardware that has
capability to vary the FDC clock on the fly, or the capability to directly control the bit cell
width/position (e.g. the Discovery Cartridge, KryoFlux board).

 Detection: By reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several
times and checking that returned data are random (see Fuzzy bits in Data and Fuzzy Bits
in ID). Without specific hardware (e.g. KryoFlux board) it is not possible to find the real
underlying cause of the fuzzy bits.

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of bytes). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Preservation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector.

 Example: Dungeon master Track 0, sector 7

5.2.4 MFM Timing Violation
 Description: These fuzzy bits are obtained by using flux reversals that violate the timing

of the MFM rules.
 Creation: These fuzzy bits are obtained by placing flux reversals that contains MFM

timing violations (data separated by less than 4 µs or more than 8 µs). For example a
long series of zero data with missing clock bits. These bit-cell width are beyond the
normal DPLL capture range and the next received reversal will be interpreted differently
based on small random variation of the DPLL clock and/or the drive rotation speed. Of
course this technique requires special hardware that has capability to vary the FDC clock
on the fly, or the capability to directly control the bit cell width/position (e.g. the Discovery
Cartridge).

 Detection: By reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several
times and checking that returned data are random (see Fuzzy bits in Data and Fuzzy Bits
in ID). Without specific hardware (e.g. KryoFlux board) it is not possible to find the real
underlying cause of the fuzzy bits.

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of bytes). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Preservation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector.

 Example: D50 Editor - Track 0 - Sector 10 (over 700 timing violation in the Data Field!)

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 19 / 53

5.2.5 No Flux reversals Area
 Description: These fuzzy bits are obtained by having a long area without flux

reversals (this is an extreme version of the above timing violation). Note that the lack of
flux reversal increases the gain on the head (AGC), eventually leading to an amplified
level that generates a fake flux reversals and the PLL data separator can't lock onto the
clock/data bits. The result is that the sector is read with fuzzy bits.

 Creation: Requires specific hardware. A normal drive can't create such a long spacing
between two flux reversals. This is a limitation of the drive, and not a limitation of the
controller.

 Detection: By reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several
times and checking that returned data are random (see Fuzzy bits in Data and Fuzzy Bits
in ID). Without specific hardware (e.g. KryoFlux board) it is not possible to find the real
underlying cause of the fuzzy bits.

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of bytes). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Preservation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector.

 Example: Turrican.

5.2.6 Weak Bit
 Description: We use the term weak bits for data bits that produce weak flux reversals

below a certain threshold that will therefore result in ambiguous reading returning
different values on different reads (see fuzzy bits for a generic description). The
SpinRight documentation (from SpinRite's Defect Detection Magnetodynamics site)
gives a good explanation on weak recorded reversals.
Weak bits can be created by many different means
but the most popular have being described in the US
Patent 4,849,836.
One method consists to move the head slightly out of
alignment during write operation (see figure 3). As
the Atari FD drives do not have a sophisticated track
follower mechanism, this result in weak reversals
during read (see figure 4).
Another method consists in writing a “protection
track” in between normal tracks (see figure 5). It is
obvious that this extra track will induce perturbations
in the data bit flux of the adjacent tracks resulting in
weak bits when there is opposition in the fluxes.
Yet another method consists in placing bits on top of
physical defects on floppy surface. To be useful
these defects have to be created precisely on
specific spots of the surface layer using for example
evaporation with an infrared laser.

 Creation: Creation of this type of weak bits requires very specialized hardware.
 Detection: As describe in the Fuzzy bits section, the weak bits will result in random

values returned for subsequent read operations and are therefore easy to detect.
 Duplication: It is obviously at least extremely difficult if not impossible to exactly

reproduce the weak bits described in this section. However it is possible to mimic their
behavior by placing Flux Reversals in Ambiguous area as this result in the same behavior
and therefore should be transparent to the detection mechanism of the protected
program.

 Preservation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector.

 Examples: I am not aware that this technique has been used on Atari.

http://www.grc.com/files/technote.pdf
http://www.grc.com/srphysics.htm

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 20 / 53

5.3 Protections based on Bit-rate Variation
This section describes the protections based on variations of the bit-rate from the standard 4
µs cell. Although different techniques are used the end result of using bit-rate variation is
always the same: the overall time-length of a byte, transferred to/from the drive, is different
from a “normal 32 µs byte”. Therefore detection of this protection requires to be able to
measure timing information when reading a block of bytes and/or a sector.

5.3.1 Long / Short Sector
 Description: This kind of sector can be created by writing a sector of a track with an

apparent rotation speed of the drive slightly above or below the normal speed. This
results in a reading time for this sector above or below the reading time of a “normal
sector”. In practice this is obviously not done by varying the rotation speed of the drive
(not practical, inaccurate, and with slow variation due to mechanical inertia), but by
changing the FDC’s bit-cell clock. The IBM standard specifies that the FDC circuitry
should handle a variation of the drive’s rotation speed within ± 2% range. Therefore the
DPLL of a FDC is supposed to accept at least a 4% variation. But in practice the WD1772
DPLL (See WD1772 DPLL Input Circuitry) can handle a 10% variation for MFM encoding
(as described in the DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 µs bit
width) and to still read the data correctly. However the resulting sector will be longer or
shorter than a normal sector. The most famous usage of this protection was done by Rob
Northen in the Copylock (RNC) protection mechanism10 (see an interview with Rob
Northen): in this case the bit width is changed to approximately 4.2µs (about 4 to 5%
variation) to result in a shorter sector. The beginning of the sector (for about 32 bytes) is
written at normal speed so that we are sure that the data in this section are always read
correctly. Note that due to the sharp transition done of the clock bit-rate, the sector may
also contain fuzzy bits and in turn this results in a CRC error.

 Creation: It requires special hardware: e.g. the capability to vary the drive rotation speed,
or the capability to vary the FDC bit cell clock on the fly, or the capability to directly
control the bit cells width like with the Discovery Cartridge from Happy Computing.

 Detection: can’t be done with standard TOS call as it is necessary to measure the time it
takes to read the bytes in the short/long sector and compare it with the reading time of
other sectors on the same track. Therefore it requires to write specific routines.

 Duplication: Difficult and requires special hardware. Analog or Digital copiers can be
used but, as usual, digital copier should be preferred whenever possible.

 Preservation: The preservation file should store information about the timing information.
 Example: Populous - Track 0 Sector 6.

10 According to vauvillf: there has been 2 RNC. The old one used for example on Arkanoid2,
and Thundercats… It was possible to copy RNC-1 with the acopy program (only 2 to 3
times). Then there was a big evolution of the RNC protection sometime in 1988: with this one
it was no more possible to copy the protection by software, and it was also using the famous
trace decoding loop. Apparently the description provided here refers to the RNC-2 protection.

http://members.tripod.com/whdloadrules/rob_northen_interview.html
http://members.tripod.com/whdloadrules/rob_northen_interview.html

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 21 / 53

5.3.2 Long/Short Track
 Description: This kind of track can be created by writing all sectors of a track with an

apparent rotation speed of the drive slightly above or below the normal speed (i.e. having
Long / Short Sector for all sectors). This results in a track that contains more or less bytes
than a normal 6240 bytes track. In practice this is obviously not done by varying the
rotation speed of the drive (not practical, inaccurate, and with slow variation due to
mechanical inertia), but by changing the FDC’s bit-cell clock. The IBM standard specifies
that the FDC circuitry should handle a variation of the drive’s rotation speed within ± 2%
range. Therefore the DPLL of a FDC is supposed to accept at least a 4% variation. But in
practice the WD1772 DPLL (See WD1772 DPLL Input Circuitry) can handle a 10%
variation for MFM encoding (as described in the DPLL Patent). It is therefore possible to
write sectors with bit cells at frequencies between 225 and 275 KHz (corresponding
respectively to 3.6 to 4.4 µs bit width) and to still read the data correctly.

 Creation: It requires special hardware: e.g. the capability to vary the drive rotation speed,
or the capability to vary the FDC bit cell clock on the fly, or the capability to directly
control the bit cells width like with the Discovery Cartridge from Happy Computing.

 Detection: You have to use a read track command. The normal length is around 6240
bytes and usually the program using this protection checks that the track has more or
less than a specific number (e.g. less 6027 in Arkanoid).

 Duplication: Difficult and requires special hardware. Analog or Digital copiers can be
used but, as usual, digital copier should be preferred whenever possible.

 Preservation: The preservation file should store information about the timing information.
 Example: Arkanoid , Indiana jones last crusade, Guntlet II, Garfield, speedball

5.3.3 Intra-Sector Bit-rate Variation
 Description: This is a more difficult to detect bit-rate variation. One sector of a track is

divided into several parts and each of them is written with a “drive rotation speed” slightly
above or below the normal speed. In practice this is actually not done by varying the drive
rotation speed (not practical, inaccurate, and slow variation due to mechanical inertia),
but by changing the FDC’s bit-cell clock. By using faster and slower parts in the same
sector it is possible to have the timing of these parts to compensate resulting in a sector
with an overall normal length. The Macrodos protection from Speedlock Associates uses
such sector: i.e. Track 1 Sector 1 of the Colorado disk is divided into 4 parts: normal-fast-
slow-normal rotation speed. Another variant (apparently only used on IBM platform) is to
continuously modulate the bit-cell width (for example with a sinusoidal signal) also
resulting in a standard overall timing of the sector.

 Creation: Requires special hardware that has capability to vary the FDC clock on the fly,
or the capability to directly control the bit cell width/position (e.g. the Discovery Cartridge).

 Detection: It is quite difficult to detect this protection because the overall sector length is
usually kept to a “normal” length. It is therefore necessary to measure the timing of block
of characters (usually multiple of 16) inside a sector and to compare it to standard block
length to check for specific above or below patterns.

 Duplication: Of course it is impossible for the WD1772 FDC to copy this kind of sector
and therefore special HW is required. Analog or digital copiers can be used but, as usual,
digital copier should be preferred whenever possible.

 Preservation: The preservation file should store information about the timing information.
It is only possible to store timing information about reading a 16 bytes block.

 Example: Damocles, Colorado, Starblade, Treasure Trap

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 22 / 53

5.4 Protections based on Track Alteration
These protections are based on alteration of a track resulting in “incorrect” results during
reading. Sectors that contain these alterations are usually read with CRC error and possibly
fuzzy bits.

Actually these techniques should probably always result in Fuzzy Bits otherwise only having
bad CRC would be too easy to reproduce?

5.4.1 Physical Alteration of Track
 Description: Obtained by physically altering a track: lots of techniques have been used

ranging from disk scratching to careful evaporation of surface layer with an infrared laser.
These techniques (like making a small hole in the diskette surface with a laser) have
been largely used with IBM and APPLE2 5 ¼ diskettes but as far as I know they have not
been used on Atari.

 Creation: Directly related to the defect and usually requires specific hardware.
 Detection: The physical defects produce default during reading (at least CRC error and

possibly fuzzy bits). Note that the original defects cannot always be positioned exactly
and detection should take this into account.

 Duplication: Normally not possible (although some people had developed expertise like
in reproducing holes with a needle at the same exact disk location!), but approximation of
equivalent defect can sometimes be created using CRC error and/or fuzzy bits.

 Preservation: Same as for Fuzzy sector.
 Example: None on Atari?

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 23 / 53

6 Atari Low-Level Formats
The Atari ST uses the Western Digital WD1772 Floppy Disc Controller (FDC) to access the 3
1/2 inch (or to be more precise 90mm) floppy diskettes. Western Digital recommends to use
the IBM 3740 Format for Single Density diskette and to use the IBM System 34 Format for
Double Density diskette. Actually the default format used by the Atari TOS is slightly different
(closer to the ISO Double Density Format) as it does not have an IAM byte (and associated
the associated GAP), before the first IDAM sector of the track (see diagram below).
However the WD1772 (and therefore the Atari) is capable of reading both format without
problem but the reverse is usually not true (i.e. floppies created on PC can be read on Atari
but floppies formatted on early Atari machines can't be read on PCs).

IBM System 34 Double Density Format (produced on a DOS machine formatting in 720K)

ISO Double Density Format.

Below is a detail description of the Standard Atari Double Density Format created by the
early TOS.

Note: Many different conventions have been used to decompose and name the GAPS of a
track. This document uses a GAP numbering scheme which is a combination of the IBM and
ISO standards. It also decomposes the GAP between the ID record and the DATA record.
Usually only one gap is described between these two records but in this document it is
decomposed into a ID postamble gap (Gap 3a) and a DATA preamble gap (Gap 3b). This
allows a more detail description, but of course they can be recombined into one more
standard gap (Gap3). Although not shown in the diagram below a floppy formatted on an IBM
has an extra IAM (index address mark) before the first sector. In that case the Gap1 is
decomposed into two gaps: A post index gap (Gap1a) and a post IAM gap (Gap1b).

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 24 / 53

The table below indicates the standard values of the different gaps in the standard Atari
diskette with 9 sectors of 512 user data bytes. It also indicates the minimum acceptable
values (as specified in the WD1772 datasheet) of these gaps when formatting nonstandard
diskettes.

NAME STANDARD VALUES (9
SECTORS)

MINIMUM VALUES
(DATASHEET)

Gap 1 Index postamble 60 x $4E 32 x $4E
Gap 2 ID preamble 12 x $00 + 3 x $A1 8 x 00 + 3 x $A1
Gap 3a ID postamble 22 x $4E 22 x $4E
Gap 3b Data preamble 12 x $00 + 3 x $A1 12 x $00 + 3 x $A1
Gap 4 Data postamble 40 x $4E 24 x $4E
Gap 5 Index preamble ~ 664 x $4E 16 x $4E

Standard Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 92 Bytes / Sector
Minimum Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 72 Bytes / Sector
Standard Sector Length (Sector Gaps + ID + DATA) = 92 + 7 + 515 = 614 bytes

Note that the minimum values as specified in the WD1772 datasheet are not respected in the
case of a track formatted with 11 sectors:
Minimum Sector Length (Sector Gaps + ID + DATA) = 72 + 7 + 515 = 594

The ID and DATA preamble are used to lock the PLL and should normally be kept as 12 $00
bytes. The FD format do not reserve a write splice byte (where the head write current is
switched on or off) and therefore it should be considered as part of the data preamble field
for format and write operations, and as part of the ID postamble for read operations.

One complete ID/DATA segment looks like this

22 x 4E 40 x 4E12 x 00 3 x A1 DAM FB or
DDAM F8 User Data 512 Bytes CRC1 CRC 212 x 00 3 x A1IDAM FE Track # Side # Sect # Size CRC1 CRC 2

Write Gate

ID Segment

ID Field ID postamble Data preamble Data Field Data postambleID preamble

Data Segment

As this format does not define any write splice field, it should be included as part of the DATA
preamble field for format and write operations and as part of the ID postamble for read
operations.

6.1 “Standard” 9-10-11 Sectors of 512 Bytes Format
Note that the 3 1/2 FD are spinning at 300 RPM which implies a 200 ms total track time. As
the MFM cells have a length of 4 µsec this gives a total of 50000 cells and therefore about
6250 bytes per track. The table below indicates possible values of the gaps for tracks with 9,
10, and 11 sectors.

Name 9 Sectors: # bytes 10 Sectors: # bytes 11 Sectors: # bytes
Gap 1 Index postamble 60 60 10
Gap 2 ID preamble 12+3 12+3 3+3
Gap 3a ID postamble 22 22 22
Gap 3b Data preamble 12+3 12+3 12+3
Gap 4 Data postamble 40 40 1
Total Gap 2-4 92 92 44
Record Length 614 614 566
Gap 5 Index preamble 664 50 20
Total Track 6250 6250 6250

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 25 / 53

Respecting all the minimum value on an 11 sectors / track gives a length of:
 L = Min Gap 1 + (11 x Min Record Length) + Min Gap 5 = 32 + 6534 + 16 = 6582
(which is about 332 bytes above max track length). Therefore we need to decrease each
sector by about 32 bytes in order to be able to write such a track. For example the last
column of the table above shows values as used by Superformat v2.2 program for 11
sectors/track (values analyzed with a Discovery Cartridge).

As you can see the track is formatted with a Gap 2 reduced to 6 and Gap 4 reduced to 1!
These values do not respect the minimum specified by the WD1772 datasheet but they make
sense as it is mandatory to let enough time to the FDC between the ID block and the
corresponding DATA block which implies that Gap 3a & 3b should not be shortened. The
reduction of Gap 4 & 2 to only 7 bytes between a Data Field and the next ID Field does not
let enough time to the FDC to read the next sector on the fly but this is acceptable as this
sector can be read on the next rotation of the FD.

This has an obviously impact on performance that can be minimized by using sectors
interleaving. But it is somewhat dangerous to have such a short gap between the data and
the next ID because the writing of a Data Field need to be perfectly calibrated or it will collide
with the next ID block. This is why such a track is usually reported as “read only” (as in DC
documentation) and is sometimes used as a protection mechanism.
Of course you have more chance to successfully write 11 sectors on the first track (the outer
one) than on the last track (the inner one) as the bit density gets higher in the latter case. It is
also important to have a floppy drive that have a stable and minimum rotation speed
deviation (i.e. RPM should not be more than 1% above).

6.2 “Standard” 128-256-512-1024 Bytes / Sector Format
The table below indicates standard (i.e. classical) gaps values for tracks with sectors of size
of 128, 256, 512, and 1024.

Name 29 sectors of
128 bytes

18 sectors of
256 bytes

9 Sectors of
512 bytes

5 Sectors of
1024 bytes

Gap 1 Index postamble 40 42 60 60
Gap 2 ID preamble 10+3 11+3 12+3 40+3
Gap 3a ID postamble 22 22 22 22
Gap 3b Data preamble 12+3 12+3 12+3 12+3
Gap 4 Data postamble 25 26 40 40
Total Gap 2-4 75 77 92 120
Record Length 213 343 614 1154
Gap 5 preamble 73 76 664 480
Total Track 6250 6250 6250 6250

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 26 / 53

7 WD1772 Floppy Disk Controller
For a complete description please refer to the WD1772 Datasheet. Here we only present
some information of interest in understanding the behavior of the FDC in the context of
certain fuzzy-bits and long/short bytes.

7.1 WD1772 DPLL Input Circuitry
This section provides basic information on the DPLL of the WD1772 and how the decoded
bits are entered into the FDC shift register. It does not describe the data separator which is
based on usage of an AM (Address Marks) detector to find a specific pattern in the shift
register (usually during gaps) as it is pretty simple to understand and not useful in the context
of this document.

This is a simplified block diagram of the input circuitry of the FDC:

The WD1772 uses a digital phase lock loop (DPLL) circuit for reading the input data
transmitted from FD media. Inspection windows are established that have duration
proportional to the frequency of arrival of the data, and start/stop times that can be adjusted
so that subsequent data bits will be received in the middle of the inspection windows. To
achieve this, the DPLL circuitry applies frequency and phase corrections that compensate
the input data frequency drift. This drifts are usually due to unsteadiness of the motor drive
speed (the frequency drift), and the migrations of the magnetic reversals area (the phase
drift). The DPLL used inside the WD1772, as well as many other FDC build in the 80s,
implements an algorithm described in the public US patent 4,870,844. The patent is rather
complex and in this section I will only highlight some of the most important aspects of the
DPLL algorithm that are useful to understand the behavior in the context of fuzzy bits,
long/short track, etc.

If you want to fully understand the behavior of the DPLL please refer to the patent. Note that
in order to provide precise results my Analyze, KFAnalyze, and KFPanzer programs fully
implement the DPLL algorithm as described in the patent.
Let’s first look at typical MFM data encoding:

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 27 / 53

As we can see the nominal values for the possible reversals spacing in DD MFM (1MB
mode) are: 4µs, 6µs, or 8µs.

The data input circuit of the FDC ensures that the data pulses received are converted into
data bits and stored in the data shift register (DSR). For that matter the digital phase lock
loop defines inspection windows that repeat every 2µs (a half cell size). A one is input to the
shift register if a data pulse is received at any time during one inspection windows; otherwise
a zero is stored in the shift register as the value for the current bit.

The period of the inspection windows is gradually adjusted (expanded or shortened) to
compensate an eventual frequency shift affecting the input data transfer. This frequency
correction is computed based on the history of the location (relative to the inspection
window) of the last three flux reversals.

Ideally, individual pulses should be located in the middle of the inspection windows. To
achieve this, the start and stop times of the inspection windows are adjusted to compensate
for deviation (from ideal) in time of arrival of the most recently detected data pulse. This
phase correction is done proportionally to the distance of the reversals with the middle of the
inspection window.

The proper ratio of phase and frequency correction provided in the loop is carefully balanced
so that the DPLL is fast settling but stable. A large amount of phase correction cause the
loop to settle faster but also make it more sensible to noise. On the other hand if too much
frequency correction is used, the loop can become unstable.

It is interesting to note that the DPLL as defined in the patent allow an input frequency
variation of up to 9%. This corroborates the actual measurement made with a WD1772 that
correctly interprets bits with a variation of at least 9 to 10 % for DD MFM (and about 100% for
SD FM!). Note that these values are well above the variation used by the Copylock and
Macrodos protection mechanisms (usually less than 5%) and therefore the data within this
kind of sector should be read correctly.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 28 / 53

7.2 WD1772 Detection of Fuzzy Bits
With the above information it is now easy to understand that if a bit reversals happens close
to the border of an inspection window (also called Ambiguous area) it will be detected into
the first or the next inspection window based on small variation of the drive rotation speed
between two read-sector commands and this will therefore result in pseudo random values
returned (fuzzy bits).

For example having a reversal 5µs apart from the previous one can be interpreted as a
reversal after 4µs or a reversal after 6µs based on small frequency fluctuation of the rotation
speed between two reads. One might argue that it is not possible to make sure that these
“marginal reversals” will be positioned correctly due to the fact that the rotation’s speeds of
different drives are somewhat different and therefore precise reversals timing on a floppy
diskette cannot be guaranteed. But in practice this is where the frequency and phase
correction of the WD1772 DPLL comes into play. As explained above the inspection window
will have it size (i.e. frequency) and position corrected based on the input reversals stream
after reception of only a few reversals. Therefore the DPLL of the FDC automatically adjust
the frequency of inspection windows for any acceptable (about 10%) variation of drive speed
and adjust the phase so that a “normal reversal” will be perfectly in the middle of the
inspection window and a “marginal reversal” will be perfectly at the border of the inspection
window.

This also explains why, in most cases, “fuzzy bits” are used in “compensating pair”: for every
two subsequent fuzzy bits the first reversal is placed at one extreme (e.g. at the beginning) of
the inspection window and the “compensating reversals” of the next fuzzy bit at the other
extreme (e.g. at the end) of the inspection window. By using this kind of “compensating bits”
we guarantee that the frequency and the phase of the inspection windows are (almost) not
affected.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 29 / 53

8 Analysis of Games/Programs
This section provides detailed analyses of some programs/games using key disk protection.
The analyses have been done with the goal to illustrate the usage of the protections
described in this document.

However it must be noted that:
 The presence of a described protection mechanism does not imply that it is actually used.
 It is possible that for one game analyzed more protections than the one described exist.
 Beware that several releases of one game may exist with different protections.
 Only Original diskettes have been used (unless specifically noted). However it is difficult

to know for sure that a diskette has not been tampered.

In most cases the detection of protections has been performed using the “automatic mode” of
the Panzer / KFPanzer programs. However whenever a protection or a strange behavior has
been detected further analysis has been performed specially with the Analyze / KFAnalyze
programs working at flux reversals level.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 30 / 53

8.1 Dungeon Master (FTL Inc.)
For detail analysis of the Dungeon Master & Lost Scroll protection please refer to the DM
Protection document, the detailed analysis of the Dungeon Master and Chaos Strikes Back
for Atari ST Floppy Disks and the US patent “Copy Protection for computer Disc 4,849,836”)

The game “Dungeon Master” uses the following protection mechanisms:
 Invalid Sector Number: Track 0 the sector 8 is numbered 247.
 Fuzzy bits & Sector with bad Data: Track 0 sector 7 the Data Field has bits in

Ambiguous areas resulting in a fuzzy sector with CRC error.

Here is the Layout of track 0 as analyzed by the KFAnalyze program
**
Track Layout Information: 6258 Bytes - length=199.981 ms
ID Good/Bad=10/0 - Data Good/Bad=9/1 - Synch Good/Bad =20/0
**

GAP1 56 bytes length=1818.28 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
15 458 |1 2276 223 OK |37 1179 0|515 16433 OK 0 0 3.99|41 1307 0
15 478 |2 21899 223 OK |37 1179 0|515 16493 OK 0 0 4.00|41 1308 0
15 477 |3 41581 222 OK |37 1177 0|515 16452 OK 0 0 3.99|41 1305 0
15 477 |4 61217 222 OK |37 1174 0|515 16392 OK 0 0 3.98|41 1302 0
15 475 |5 80785 222 OK |37 1171 0|515 16451 OK 0 0 3.99|41 1313 0
15 480 |6 100425 224 OK |37 1186 0|515 16525 OK 0 0 4.01|41 1308 0
15 477 |7 120148 222 OK |37 1174 0|515 16506 BAD 0 495 4.01|41 1313 0
15 479 |247 139845 223 OK |37 1179 0|515 16410 OK 0 0 3.98|41 1304 0
15 476 |9 159441 222 OK |37 1173 0|515 16418 OK 0 0 3.98|41 1311 0
15 480 |10 179047 223 OK |37 1181 0|515 16536 OK 0 0 4.01|93 2991 0
-----------+------------------+-----------+---------------------------+------------

As you can see in sector 7 we have a lot of border bits (BRD) aka bits in Ambiguous area.
Looking at the content of this sector we can see that the clock period range from 3938 ns to
4031 ns with an overall clock period of 4.01 µs

Detail buffer content for sector 7 with 515 bytes
= DATA ID=7 515 bytes @121545 us length=16506.79 CRC BAD CLK=4.01 TMV=0 BRD=495 DOI=0
 *** Fuzzy Sector *** starting at byte position 34
 0000 121545 3968 fb 07 50 41 43 45 2f 46 42 09 53 65 72 69 ca 08 ..PACE/FB.Seri..
 0010 122055 3968 00 00 ef e9 01 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhh
 0020 122565 3938 68 68 68 e8 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 hhh......hhhhhhh
 0030 123073 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 0040 123583 4031 68 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 h.....hhhhhhhhhh
 0050 124092 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 hhhhhhhhhhhhhh..
 0060 124604 4000 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhh
 0070 125114 4000 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 e8 e8 hhhhhhhhhhhh....
 0080 125628 3968 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 ...hhhhhhhhhhhhh
 0090 126141 4000 68 68 68 68 68 68 68 68 68 68 e8 68 e8 e8 e8 68 hhhhhhhhhh.h...h
 00a0 126654 4031 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 68 ..hhhhhhhhhhhhhh
 00b0 127168 4031 68 68 68 68 68 68 68 68 e8 e8 e8 e8 e8 68 68 68 hhhhhhhh.....hhh
 00c0 127683 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 00d0 128197 3938 68 68 68 68 68 68 68 e8 e8 e8 e8 e8 28 68 68 68 hhhhhhh.....(hhh
 00e0 128710 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 00f0 129226 4063 68 68 68 68 68 68 e8 e8 e8 e8 68 68 68 68 68 68 hhhhhh....hhhhhh
 0100 129741 4031 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 0110 130257 4162 68 68 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 hh.....hhhhhhhhh
 0120 130771 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 hhhhhhhhhhhhhhh.
 0130 131288 3938 68 e8 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 h......hhhhhhhhh
 0140 131802 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 68 hhhhhhhhhhhhh..h
 0150 132319 4063 e8 e8 e8 68 e8 68 68 68 68 68 68 68 68 68 68 68 ...h.hhhhhhhhhhh
 0160 132831 4000 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 e8 e8 hhhhhhhhhhhh....
 0170 133346 3938 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 ...hhhhhhhhhhhhh
 0180 133858 4031 68 68 68 68 68 68 68 68 e8 68 e8 e8 e8 e8 e8 68 hhhhhhhh.h.....h
 0190 134371 4063 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 01a0 134882 4000 68 68 68 68 68 68 e8 68 68 e8 e8 e8 e8 e8 68 68 hhhhhh.hh.....hh
 01b0 135395 4063 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 01c0 135906 4063 68 68 68 68 68 68 68 e8 e8 e8 e8 68 e8 e8 68 68 hhhhhhh....h..hh
 01d0 136418 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh
 01e0 136931 4000 68 68 68 68 e8 68 e8 e8 e8 e8 68 68 68 68 68 68 hhhh.h....hhhhhh
 01f0 137443 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 ac 46 hhhhhhhhhhhhhh.F
 0200 137956 4000 42 3a f8 B:.

http://dmweb.free.fr/?q=node/210
http://dmweb.free.fr/?q=node/210
http://dmweb.free.fr/?q=node/1429
http://dmweb.free.fr/?q=node/1429
http://www.google.com/patents?vid=USPAT4849836

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 31 / 53

To get a more detailed vision of the sector with the fuzzy bits we use the plot capability of
KFAnalyze:

We can see that the flux reversals spacing follow a strange pattern and includes a lot of
“border bits” shown as green dots. Let’s zoom to the flux spacing line at the beginning of the
sector:

Here we can see that the beginning of the sector has normal timing. But after the position
122000 we have the bit reversals gradually sliding to the border of the inspection window
(close to 5000 ns). We can see that we have a pattern that looks like a sine wave and this
implies that many bits are at the border of the inspection window (shown as green dots).

As explained in the WD1772 DPLL Input Circuitry, having reversals at the border of the
inspection windows will result in random value latched by the DPLL data separator and
therefore these bits can be considered as Fuzzy Bits. Reading this sector several times will
results in different values returned due to the floppy disk rotation speed fluctuations.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 32 / 53

8.2 D50 Editor (DrT)
The D50 Sound Module Editor program from DrT uses the following protection mechanisms:

 Fuzzy bits: Track 0 sector 10 has fuzzy bits in the Data Field.
 Timing violations: Track 0 sector 10 has many timing violations in the Data Field as

well as many border bits (bits in Ambiguous area).

Here is the Layout of track 0 as analyzed by the KFAnalyze program:
**
Track Layout Information: 6249 Bytes - length=199.976 ms
ID Good/Bad=10/0 - Data Good/Bad=9/1 - Synch Good/Bad =20/0
**

GAP1 5 bytes length=199.85 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
117 3724 |1 3924 223 OK |37 1179 0|515 16387 OK 0 0 3.98|35 1111 0
15 477 |2 23304 223 OK |38 1210 0|515 16442 OK 0 1 3.99|33 1048 0
15 465 |3 42694 222 OK |37 1177 0|515 16413 OK 0 0 3.98|35 1112 0
15 476 |4 62096 222 OK |37 1176 0|515 16410 OK 0 0 3.98|35 1112 0
15 476 |5 81496 222 OK |37 1175 0|515 16425 OK 0 0 3.99|35 1114 0
15 477 |6 100911 222 OK |37 1175 0|515 16414 OK 0 0 3.98|35 1115 0
15 477 |7 120316 222 OK |38 1202 0|515 16453 OK 0 0 3.99|34 1086 0
15 470 |8 139751 223 OK |37 1177 0|515 16447 OK 0 0 3.99|35 1119 0
15 478 |9 159197 223 OK |37 1177 0|515 16431 OK 0 0 3.99|35 1118 0
15 479 |10 178628 223 OK |37 1178 0|515 16895 BAD 849 815 4.10|88 3050 0
-----------+------------------+-----------+---------------------------+------------

We can see that sector 10 has a lot of border bits and a lot of timing violations. To better
understand let’s look at a dump of the data track 10.

Detail buffer content for sector 10 with 515 bytes
= DATA ID=10 515 bytes @180030 us length=16895.59 CRC BAD CLK=4.10 TMV=849 BRD=815 DOI=0
 *** Fuzzy Sector *** starting at byte position 80
 0000 180030 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0010 180542 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0020 181052 4129 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0030 181561 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0040 182071 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0050 182580 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0060 183091 4129 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0070 183598 3968 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0080 184112 4129 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0090 184624 4096 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00a0 185138 4000 00 90 40 85 5f a2 f3 d2 13 83 31 82 30 00 18 18 ..@._.....1.0...
 00b0 185612 3683 41 41 00 ad c0 40 14 00 37 1e 05 05 00 82 80 40 AA...@..7......@
 00c0 186112 3878 41 0c 90 90 47 11 00 26 1a 24 20 d0 10 c0 a4 53 A...G..&.$S
 00d0 186659 4338 39 40 0d 12 40 01 40 83 dc 35 32 12 00 84 08 60 9@..@.@..52....`
 00e0 187203 3657 60 61 44 20 c0 14 02 22 03 10 01 20 02 20 4a d4 `aD ..."... . J.
 00f0 187742 4338 8f 4b 6e 46 21 94 85 d8 05 40 20 10 04 91 80 68 .KnF!....@h
 0100 188288 4129 09 18 00 08 60 d2 22 33 40 92 12 22 02 c5 1a c4 `."3@.."....
 0110 188839 3968 21 00 00 00 00 c0 c4 24 44 08 93 11 d5 0e 5c 10 !......$D.....\.
 0120 189349 4376 01 54 4a 21 54 04 cd 60 60 c0 14 6c 01 0b a5 4a .TJ!T..``..l...J
 0130 189888 4413 28 84 8c 29 05 d0 70 19 58 c2 18 f0 ee 1b 97 04 (..)..p.X.......
 0140 190428 4063 70 00 11 0e 93 84 00 98 b1 b1 8c 4f 50 c1 08 82 p..........OP...
 0150 190977 4413 87 01 25 59 08 6c 4c 11 0e c2 43 20 a7 00 50 87 ..%Y.lL...C ..P.
 0160 191523 3820 65 62 00 00 cf 80 26 40 41 41 82 00 87 02 08 40 eb....&@AA.....@
 0170 192008 3849 04 04 00 00 16 06 02 00 01 35 fc 26 41 38 4b 10 5.&A8K.
 0180 192521 4266 10 40 00 00 b2 2d d8 ce 50 94 52 0f 00 c3 75 b0 .@...-..P.R...u.
 0190 193119 4413 b0 00 21 01 a8 0b 83 03 03 25 15 0b 44 a1 00 90 ..!......%..D...
 01a0 193631 4413 42 10 42 a5 c4 74 3b a0 a7 36 1c 00 e8 15 01 10 B.B..t;..6......
 01b0 194241 4266 10 00 13 00 64 c5 90 26 05 c0 8c a0 10 04 1f 06 d..&........
 01c0 194697 3657 40 40 00 8a 01 30 20 23 06 b0 8b 7d 80 0a ac 26 @@...0 #...}...&
 01d0 195177 3878 02 0a 1e 00 ca 8a f0 29 80 83 20 02 eb d8 86 84 )..
 01e0 195729 4413 90 10 80 0a 04 09 09 04 42 00 18 30 d0 43 44 76 B..0.CDv
 01f0 196275 4413 08 34 49 8c 28 02 00 90 32 04 48 80 00 c4 0a 03 .4I.(...2.H.....
 0200 196819 4413 2a 21 1c *!.

As you can see the track looks normal. However we can already notice that the clock ranges
from 3.6 µs to 4.4 µs. This is a wide variation (about 8%) which goes far beyond normal
fluctuation. We should also note that the sector has fuzzy bytes starting at position 80.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 33 / 53

To get a more detailed vision of the sector 10 with fuzzy bits we use the plot capability of the
program:

As we can see that the sector has a lot of timing violation in the flux reversals (bits less than
4µs or more than 8µs apart) as well as a lot of border bits (in the 3000 and 5000 regions). It
is also interesting to note that the overall length of the track (16585 µs) is about the same as
a normal track (16437 µs) and this indicates that the different timing violations “compensate”.
Let’s zoom in the flux spacing line:

Here we can see that after the position 180000 we have a strange pattern with a lot of border
bits (shown in green). After the position 185000 we can see that we have random flux
reversals. This pattern is typical of an unformatted track. Therefore we can conclude that the
formatting of the track is stopped after about one third of the last sector. This is obviously not
feasible with the WD1772 FDC and on top of that it is also not possible to write random flux
reversals with the FDC. Therefore to copy this track it is necessary to have special hardware
device like Discovery Cartridge or KryoFlux board.

Note that random flux reversals result into unpredictable clock frequency (and also
unpredictable inspection windows position) of the DPLL. This and the presence of border bits
results in fuzzy bytes in the sector.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 34 / 53

8.3 Populous (Electronic Arts)
Populous from Electronic Arts uses the following protection mechanisms:

 Timing violations: Track 0 sector 6 has timing violation in the Data Field.
 Long Sector: Track 0 sector 6 is has a “long data sector” of 17206µs which is about

4.2% above a normal sector of 16502µs.

Here is the Layout of track 0 as analyzed by the KFAnalyse program:
**
Track Layout Information: 6240 Bytes - length=199.98 ms
ID Good/Bad=10/0 - Data Good/Bad=9/1 - Synch Good/Bad =20/0
**

GAP1 56 bytes length=1815.49 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
15 458 |1 2273 223 OK |37 1178 0|515 16443 OK 0 0 3.99|30 955 0
15 477 |2 21552 222 OK |37 1176 0|515 16447 OK 0 0 3.99|30 957 0
15 478 |3 40835 223 OK |37 1178 0|515 16456 OK 0 0 3.99|30 956 0
15 477 |4 60128 223 OK |37 1175 0|515 16454 OK 0 0 3.99|30 960 0
15 479 |5 79421 223 OK |37 1177 0|515 16446 OK 0 0 3.99|30 958 0
15 479 |6 98707 223 OK |37 1178 0|515 17209 BAD 1 0 4.18|87 2799 0
15 481 |7 120600 222 OK |37 1174 0|515 16418 OK 0 0 3.98|30 955 0
15 477 |8 139849 222 OK |37 1174 0|515 16418 OK 0 0 3.98|30 958 0
15 478 |9 159102 223 OK |37 1176 0|515 16426 OK 0 0 3.99|30 957 0
15 479 |10 178365 223 OK |37 1178 0|515 16446 OK 0 0 3.99|117 3766 0
-----------+------------------+-----------+---------------------------+------------

Here we can see that sector 6 length is equal to 17209 µs which is about 4.4% above a
normal 16480 µs Data Field. The average clock period for the sector is 4.18 µs instead of
4 µs. This is confirmed by the following plot (difficult to read without zoom) that shows that
the clock is raised in sector 6 and that this sector reads with a CRC error.

To better understand the timing violations detected by the program let’s first look at a dump
of the data track 6

Detail buffer content for sector 6 with 515 bytes
= DATA ID=6 515 bytes @100109 us length=17209.96 CRC BAD CLK=4.18 TMV=1 BRD=0 DOI=0
 0000 100109 4000 fb 45 6c 65 63 74 72 6f 6e 69 63 20 41 72 74 73 .Electronic Arts
 0010 100621 4000 2e 3a 9c 8a ad b8 ab 55 32 3c 82 79 04 f2 09 e4 .:.....U2<.y....
 0020 101141 4196 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 ..'.O .A<.y.....
 0030 101678 4196 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 .'.O .A<.y......
 0040 102211 4196 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 '.O .A<.y......'
 0050 102749 4196 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 .O .A<.y......'.
 0060 103283 4162 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f O .A<.y......'.O
 0070 103824 4196 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 .A<.y......'.O
 0080 104359 4196 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e .A<.y......'.O .
 0090 104894 4196 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 A<.y......'.O .A
 00a0 105437 4196 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c <.y......'.O .A<
 00b0 105972 4196 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 .y......'.O .A<.
 00c0 106506 4196 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 y......'.O .A<.y
 00d0 107047 4196 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 '.O .A<.y.
 00e0 107580 4196 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 '.O .A<.y..
 00f0 108113 4231 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 '.O .A<.y...
 0100 108651 4196 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 ...'.O .A<.y....
 0110 109184 4196 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 ..'.O .A<.y.....
 0120 109722 4196 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 .'.O .A<.y......
 0130 110255 4231 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 '.O .A<.y......'
 0140 110793 4162 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 .O .A<.y......'.
 0150 111328 4196 4f 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f O .A<.y......'.O
 0160 111869 4231 20 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 .A<.y......'.O
 0170 112403 4196 9e 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e .A<.y......'.O .
 0180 112937 4196 41 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 A<.y......'.O .A
 0190 113476 4196 3c 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c <.y......'.O .A<
 01a0 114008 4196 82 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 .y......'.O .A<.
 01b0 114541 4231 79 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 y......'.O .A<.y
 01c0 115079 4196 04 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 '.O .A<.y.
 01d0 115612 4162 f2 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 '.O .A<.y..
 01e0 116145 4196 09 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 '.O .A<.y...
 01f0 116683 4196 e4 13 c8 27 90 4f 20 9e 41 3c 82 79 04 f2 09 e4 ...'.O .A<.y....
 0200 117216 4196 13 c8 27 ..'

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 35 / 53

As we can see the data looks normal with a repeating pattern. However we can observe that
if the bit cell width starts at the normal 4.0µs, and stay to this value for the first few bytes, it
then quickly changes to 4.2µs (+5%) and stay at this value for the rest of the sector. This is a
clear indication of a long track which is confirmed by an overall Data Field length of
17209 µs.

We can now look at a plot of sector 6:

We can see that at the beginning of the sector the clock is normal then it rises to 4.2 µs until
the end of the sector

Confirmation of the Rob Northen Computing protection is found in sector 1:

Detail buffer content for sector 1 with 515 bytes
= DATA ID=1 515 bytes @3675 us length=16443.88 CRC OK CLK=3.99 TMV=0 BRD=0 DOI=0
 0000 3675 4000 fb 00 00 00 00 00 00 00 00 6d 19 9f 00 02 02 01 m......
 0010 4189 3968 00 02 70 00 20 03 00 05 00 0a 00 01 00 00 00 00 ..p.
 0020 4700 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0030 5213 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0040 5725 4000 00 50 72 6f 74 65 63 74 69 6f 6e 20 28 43 29 31 .Protection (C)1
 0050 6235 4000 39 38 38 20 52 6f 62 20 4e 6f 72 74 68 65 6e 20 988 Rob Northen
 0060 6746 4000 43 6f 6d 70 75 74 69 6e 67 2e 20 41 6c 6c 20 52 Computing. All R
 0070 7258 4000 69 67 68 74 73 20 52 65 73 65 72 76 65 64 2e 00 ights Reserved..
 0080 7771 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0090 8282 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00a0 8793 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00b0 9304 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00c0 9816 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00d0 10327 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00e0 10839 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 36 / 53

8.4 Theme Park Mystery (Image Works)
Theme Park Mystery from Image Works uses the following protection mechanisms:

 Number Of Sectors: 12 sectors per track on all tracks!
 Fuzzy Sectors on all tracks
 Sectors with bad Data Fields on all tracks
 Sector Within Sector on all tracks
 Data Over Index on all tracks
 No flux reversals area

We are going to describe mainly the Sector Within Sector protection used on every track.

Here is a dump of the end of track 1 (sector 11):
+ GAP2 11 bytes @189917 us length=347.72 us - TMV=0 BRD=0
 1754 189917 3908 ff ff ff ff ff ff ff fc a1 a1 a1
= ID=11 7 bytes @190265 length=224.00 T=0 H=0 S=11 Z=512 CRC=25a4 OK TMV=0 BRD=0 BS=0
 175f 190265 3908 fe 00 00 0b 02 25 a4 %.
+ GAP3 31 bytes @190489 us length=990.74 us - TMV=0 BRD=0 BS=0 IDG=0
 1766 190489 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 1776 191001 3968 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 a1 a1 a1 NNNNNN.........
= DATA ID=11 266 bytes @191480 us length=8491.81 us - CRC=0000 *** BAD *** - TMV=2 BRD=1 BS=0
 1785 191480 4000 fb 00 00 00 00 00 00 00 00 a1 a1 a1 fe 00 00 0c
 1795 191996 4000 02 bc 33 4e 4e 4e 4e 4e 4e 4e 4e d9 23 76 c5 e6 ..3NNNNNNNN.#v..
 17a5 192504 4000 d3 31 b2 4e 4e 4e 4e 4e 4e 4e 4e ff ff ff ff ff .1.NNNNNNNN.....
 17b5 193017 4000 fe a1 a1 a1 fb 00 00 00 00 00 00 00 00 00 00 00
 17c5 193526 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 17d5 194036 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Inside the data block of the sector 11 we have a synch sequence of 3 $A1 followed by an
IDAM followed by the ID Field for sector 12. Then we have a GAP3 followed by a synch
sequence followed by a DAM and the Data Field.

This can be seen graphically by using the all sector plot capability of KFAnalyzer.

Here we clearly see that:
 Sector 10 is normal.
 Sector 11 has a DATA Field wrapping at the beginning of the track (DOI) is read with

a CRC error (SBD) and fuzzy bits, ant it contains sector 12 (SWS).
 Sector 12 has DATA field starting inside sector 11 and wraps at the beginning of the

track (DOI) it is also read with a CRC error (SBD) and fuzzy bits.

We can also look at all sectors layout information:
All Sectors Layout Information:
------------------+-------+--+-------
ID |GAP3 |DATA |GAP4
Sct Pos Lgt CRC|Bt Lgt |Bt Pos Lgt CRC TMV BRD Clk DOI FZP |Bt Lgt
------------------+-------+--+-------
1 1090 223 OK |37 1177|515 2490 16424 OK 0 0 3.99 0 0 |24 764
2 20030 222 OK |37 1175|515 21428 16399 OK 0 0 3.98 0 0 |24 764
3 38943 223 OK |37 1174|515 40340 16398 OK 0 0 3.98 0 0 |24 764
4 57855 223 OK |37 1179|515 59257 16422 OK 0 0 3.99 0 0 |24 762
5 76792 222 OK |37 1177|515 78193 16394 OK 0 0 3.98 0 0 |24 759
6 95695 221 OK |37 1171|515 97088 16392 OK 0 0 3.98 0 0 |24 762
7 114592 222 OK |37 1173|515 115987 16387 OK 0 0 3.98 0 0 |24 763
8 133487 222 OK |37 1170|515 134880 16379 OK 0 0 3.98 0 0 |24 765
9 152376 222 OK |37 1174|515 153773 16413 OK 0 0 3.98 0 0 |24 767
10 171307 224 OK |37 1181|515 172713 16433 OK 0 0 3.99 0 0 |24 766
11 190265 224 OK |31 990 |515 191480 16413 BAD 2 1 3.98 250 266 |1 31
12 191866 224 OK |33 1050|515 193141 16410 BAD 2 1 3.98 305 214 |4 127
------------------+-------+--+-------

Here we see the overlapping sectors as well as the fact that sector 11 has 250 bytes passed
the index (DOI) and sector 12 has 305 bytes passed the index.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 37 / 53

We have also a no flux reversal area at the end of the track:

After zooming at the end of the track we see the no flux reversal area (NTA):

This NTA is located within the overlapping sectors 11 and 12. For example if we look at
sector 11 layout:

We can see that between 194500 & 199900 (close to end of track) we have a no flux
reversal area. The consequence is that sector 11 and 12 (remember both wrap to beginning
of track - DOI) read with fuzzy bits/bytes.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 38 / 53

8.5 Computer Hits Volume 2 (Beau-Jolly)
This release is a set of two diskettes that contains the following games (compilation):

 Disk 1: Tau Ceti, Tetris,
 Disk 2: Joe Blade, and Tracker.

Computer Hits Volume 2 uses the following protection mechanisms:
 Short track 79 of diskettes 1 and 2 (Long Sectors)
 Non standard Sector’s Number: 11 Sectors/Track
 Data Beyond Index pulse on tracks 0-78 of diskette 2

Short Track
All the sectors of track 79 of diskettes 1 and 2 are all long sectors above 17250 µs instead of
the normal 16480 µs (about 5%) sector. Of course on these tracks the sector count is
reduced to only 9 sectors to fit on the track. This results in a short track with less than 6000
bytes instead of a normal 6240 bytes track.

**
Track Layout Information: 5994 Bytes - length=199.979 ms
ID Good/Bad=9/0 - Data Good/Bad=9/0 - Synch Good/Bad =18/1
**

GAP1 31 bytes length=1070.66 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
11 347 |1 1418 234 OK |37 1237 0|515 17264 OK 0 0 4.19|24 802 0
11 367 |2 21323 233 OK |37 1235 0|515 17242 OK 0 0 4.18|24 802 0
11 367 |3 41205 233 OK |37 1234 0|515 17263 OK 0 0 4.19|24 803 0
11 367 |4 61108 234 OK |37 1235 0|515 17257 OK 0 0 4.19|24 801 0
11 367 |5 81004 233 OK |37 1232 0|515 17209 OK 0 0 4.18|24 800 0
11 366 |6 100847 233 OK |38 1232 1|515 17240 OK 0 0 4.18|24 801 0
11 367 |7 120722 233 OK |37 1232 0|515 17242 OK 0 0 4.18|24 802 0
11 367 |8 140600 233 OK |37 1234 0|515 17280 OK 0 0 4.19|24 808 0
11 370 |9 160527 235 OK |37 1243 0|515 17360 OK 0 0 4.21|640 20611 0
-----------+------------------+-----------+---------------------------+------------

Here is a plot of the complete track.

We can see that the
clock period is
immediately around
4.2 µs and stay at this
value until after the
last sector.

If we zoom we can
see that the clock
period goes back to
4.0 after position
180000 inside GAP4
of the last sector.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 39 / 53

Non Standard Sector
As we already mentioned using 11 sectors per track is not really a protection, however it
pushes the WD1772 at its limit. For example let’s look at the layout of track 0 of the first
diskette.

**
Track Layout Information: 6274 Bytes - length=199.978 ms
ID Good/Bad=9/2 - Data Good/Bad=9/2 - Synch Good/Bad =22/7
**

GAP1 0 bytes length=0.00 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
37 1187 |NO ID |0 0 0|515 16442 OK 0 0 3.99|4 127 0
11 351 |5 18109 223 OK |31 987 0|515 16447 OK 0 0 3.99|4 127 0
11 350 |9 36246 223 OK |31 987 0|515 16440 OK 0 0 3.99|4 127 0
11 349 |2 54373 202 BAD|32 1002 0|515 16384 BAD 0 0 3.98|5 153 0
11 350 |6 72467 223 OK |31 983 0|515 16406 OK 0 0 3.98|4 127 0
11 351 |10 90559 223 OK |31 989 0|515 16405 OK 0 0 3.98|4 127 0
11 349 |3 108655 222 OK |31 984 0|515 16402 OK 0 0 3.98|4 127 0
11 351 |7 126743 223 OK |31 986 0|515 16428 BAD 0 0 3.99|5 153 0
11 352 |11 144887 224 OK |31 989 0|515 16395 OK 0 0 3.98|4 127 0
11 349 |4 162974 222 OK |31 985 0|515 16437 OK 0 0 3.99|4 127 0
11 350 |8 181097 222 OK |31 984 0|515 16447 OK 0 0 3.99|18 572 0
20 632 |0 199958 19 BAD|0 0 0|NO DATA |0 0 0
-----------+------------------+-----------+---------------------------+------------

First we can see that there is no GAP1 as we start immediately in GAP2. Further analysis will
show that we are in fact in an ID field.

What we see is that the layout of this track uses strange values for the number of bytes in
GAPS. The GAP3 is set to 31 bytes and GAP4 is only 4 byte. This is a weird layout for 11
sectors/track (please refer to Standard 9-10-11 Sectors of 512 Bytes Format for a more
reasonable one). Normally Gap3 must be 37 bytes (22x$4E+12x$00+3x$A1) and is not
compressible. This corresponds to the time it takes for the WD1772 to switch from reading
an ID Field to a Data Field. Here we have the following GAP3

+ GAP3 31 bytes @18333 us length=987.49 us - TMV=0 BRD=0 BS=0 IDG=0
 023e 18333 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 024e 18844 4000 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 a1 a1 a1 NNNNNN.........

This format results in a “read only” track because we have the normal 22x$4E bytes
(GAP3a) but we only have 6x$00 bytes. If a write is done on such sector the write gate is
raised at the end of the ID postamble (GAP3a) then the WD1772 write 12x$00 3 synch bytes
and a normal data field. This results in the sector to be shifted by 6 bytes but the data
postamble (GAP4) is only 4 bytes and therefore we are already in the next sector!

Sector Over Index
Now we are going to describe the Data Beyond Index pulse protection. The KFAnalyze
program finds this information during the read track phase:

Detail buffer content 6274 (0x1882) bytes
+ GAP1 0 bytes @0.000 ms length=0.00 us - TMV=1 BRD=0 BS=0

+ GAP2 37 bytes @0 us length=1187.36 us - TMV=0 BRD=0
 0000 33 4031 00 00 40 b2 9b d3 93 93 93 93 93 93 93 93 93 93 ..@.............
 0010 541 4000 93 93 93 93 93 93 93 93 93 93 93 80 00 00 00 00
 0020 1053 3968 00 c2 a1 a1 a1
= ID=0 0 bytes @0 length=0.00 T=0 H=0 S=0 Z=512 CRC=0000 OK TMV=0 BRD=0 BS=0
+ GAP3 0 bytes @0 us length=0.00 us - TMV=0 BRD=0 BS=0 IDG=0
= DATA ID=0 515 bytes @1187 us length=16442.76 us - CRC=e31e OK - TMV=0 BRD=0 BS=0
 0025 1187 3968 fb e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 00 02 02 e5
 0035 1696 3968 e5 02 40 00 70 03 e5 05 00 0b 00 01 00 e5 e5 e5 ..@.p...........
 0045 2206 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 0055 2716 3968 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 0065 3226 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 0075 3737 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5

As we can see at about 37 bytes ($25) from the beginning of the track we find a DAM
(highlighted in yellow) followed by a complete data field of 512 bytes. Obviously the first few
bytes of the track are part of an ID field not decoded correctly.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 40 / 53

Now if we look at the end of this track buffer we find something like:
+ GAP2 20 bytes @199325 us length=632.73 us - TMV=0 BRD=0
 186d 199325 4000 ff ff ff ff fe 01 39 39 39 38 00 00 00 00 00 00 9998......
 187d 199840 4000 02 a1 a1 a1
= ID=0 1 bytes @199958 length=19.95 T=0 H=0 S=0 Z=512 CRC=0000 *** BAD *** TMV=0 BRD=0 BS=0
 1881 199958 4031 fe

As you can see here we only have a synch sequence followed by an IDAM but not the rest of
the ID field (remember the read track command terminates at the index). This start of the ID
field (the IDAM) is therefore at the very end (only few micro seconds) of the track and
therefore the rest of ID field must be at beginning of track.

Therefore if you do a read track command on a real Atari you have all the chance not to see
this ID field. For example here is the content of the end of the track buffer as read by the
Panzer program on a real Atari:

 1830 3973 ff 80 00 00 00 3f ff ff ff 80 00 00 00 3f ff ff ?.......?..
 1840 3973 ff 80 00 00 00 3f ff ff ff 80 00 00 00 3f ff ff ?.......?..
 1850 4037 ff 80 00 00 00 3f ff ff ff e0 10 c8 48 48 48 48 ?......HHHH
 1860 3973 48 48 48 48 48 48 48 48 00 00 00 00 00 00 00 00 HHHHHHHH........
 1870 4069 00 00 10 90 90 90 90 ff ff ff ff ff ff ff c2 a1

Here you can see that we have the start of the synch sequence but not the IDAM. This is
probably due to the Atari DMA circuit: the DMA always delivers multiples of 16 bytes due to
the buffering mechanism and therefore up to 15 bytes may be “stuck” in the DMA buffer at
the end of the read-track command.

However the WD1772 will detect this ID field without problem with a read-address command
and will find the corresponding DATA field with the read-sector command.

Therefore it looks almost impossible to position this ID Field with this precision by software
and some hardware device is most likely required.

If we look at all sectors plot:

And if we zoom at the end we see clearly that the ID field has its beginning before the index
(but very close to it) and the rest of the field is “passed the index”.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 41 / 53

8.6 Kick Off 2 (Anco Software)
Kick Off 2 (by Anco Software 1990) uses various combinations of the following protection
mechanisms on tracks 2 to 6:

 Non standard Sector’s Number: 12 Sectors/Track
 Data Over Index pulse
 Sector Within Sector (and even Sector Within Sector Within Sector)
 Non Standard sector Size (1024)
 No Flux reversal Area
 Fuzzy bytes

Let’s look at the end of the buffer from the read-track command:
+ GAP2 31 bytes @183298 us length=965.75 us - TMV=0 BRD=0
 169d 183298 3968 00 43 00 e4 24 24 24 24 24 24 24 24 24 24 24 3f .C..$$$$$$$$$$$?
 16ad 183806 4000 ff ff ff ff ff ff ff ff ff ff ff c2 a1 a1 a1
= ID=0 7 bytes @184264 length=223.29 T=2 H=0 S=0 Z=1024 CRC=0417 OK TMV=0 BRD=0 BS=0
 16bc 184264 3968 fe 02 00 00 03 04 17
+ GAP3 37 bytes @184487 us length=1178.12 us - TMV=0 BRD=0 BS=0 IDG=0
 16c3 184487 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 16d3 184998 4000 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 00 00 00 00 NNNNNN..........
 16e3 185508 4000 00 00 a1 a1 a1
= DATA ID=0 451 bytes @185665 us length=14314.28 us - CRC=0000 *** BAD *** - TMV=0 BRD=1 BS=1
 16e8 185665 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 16f8 186180 3968 00 a1 a1 a1 fe 02 00 10 03 07 64 4e 4e 4e 4e 4e dNNNNN
 1708 186688 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 1718 187199 3968 4e ff ff ff ff ff ff ff ff ff ff ff fe a1 a1 a1 N...............
 1728 187703 3968 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 1738 188215 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 1748 196265 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 1758 196265 3968 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
 1858 197363 4000 09 09 09 09 09 09 0f ff ff ff ff ff ff ff ff ff
 1868 197876 4000 ff ff f0 a1 a1 a1 fe 02 00 01 02 27 07 4e 4e 4e '.NNN
 1878 198377 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 1888 198890 4000 4e 4e 4e 00 00 00 00 00 00 00 00 00 00 00 00 a1 NNN.............
 1898 199400 4000 a1 a1 fb ae 28 2b a3 7d 24 b1 cc 3d 84 c0 9f 63 (+.}$..=...c
 18a8 199912 4000 0b 4d 6d .Mm

As we can see we have a synch sequence followed by an ID Field at $16BC followed by a
GAP3 followed by a synch sequence and a Data Field starting at byte $16E8. We are too
close to the end of the track to have a complete Data Field so we can say that this sector
(sector 00) has Data Over the Index pulse (DOI). Reading this sector with a read sector
command indicates that the sector has Fuzzy bits and reads with a CRC error (SBD).

Now if we look inside this sector 0 Data Field we can see that we have a synch sequence
followed by an ID Field at byte $16FC followed by a GAP3 followed by a synch sequence
followed by a Data Field starting at byte $1728. So here we have a Sector 16 Within Sector
00 (SWS). We are too close to the end of the track to have a complete Data Field so we can
say that this sector (sector 16) has Data Over the Index pulse (DOI). Reading this sector with
a read-sector command indicates that the sector has Fuzzy bits and reads with a CRC error
(SBD).

But if we continue looking inside the sector 16 Data Field (which is itself inside the sector 00
Data Field!) we can see that we have a synch sequence followed by an ID Field at byte
$186E followed by a GAP3 followed by a synch sequence followed by a data field starting at
byte $189A. So here we have a Sector 01 within Sector 16 (SWS) which is in fact it is a
Sector 01 Within Sector 16 Within Sector 00! We are too close to the end of the track to have
a complete Data Field so we can say that this sector (sector 01) has Data Over the Index
pulse (DOI). Reading this sector with a read sector command returns a good sector.

The layout is the following:

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 42 / 53

If we zoom to the end of this plot:

We can see that most of the data for sector 01 are in fact located at the beginning of the
track. The first ID Field of the track for sector 02 is only found at byte 521 after a synch
sequence.

So here we can summarize the protection as follow:
 We have a sector 00 that has Data Over Index (DOI) as well as Fuzzy bits (FZD) and

CRC error (SBD).
 Inside the sector 00 we have a sector 16 (SWS) that has Data Over Index (DOI) as

well as Fuzzy bits (FZD) and CRC error (SBD).
 Inside sector 16 (which is inside sector 00) we have a sector 01 (SWS) that has Data

Over Index (DOI), with most of the data are at the beginning of the track, that reads
correctly. So here we have a recursive SWS

We can see for track 2 the sectors 0 & 16 are defined with a non standard data size of 1024
bytes

Now let’s look at the flux reversals for the complete track:

We can see a large area without reversals at the end of the track.

If we look at sector 0 plot we have:

Here we clearly see the no reversal area in sector 0. The sector 16 is also located on top of
this NTA. Therefore both sectors read with fuzzy bits. But sector 1 is located at the very end
of the track after the NTA and therefore reads correctly.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 43 / 53

8.7 Night Shift
Night Shift (US Gold) uses various combinations of the following protection mechanisms:

 Sector with No Data: Sector 66 (2 sectors) on track 0-78
 Duplicate Sector: Sector 66 on track 0-78
 Long Sectors: Sector 0-9 on track 79
 Sector with Fuzzy Bits: Sector 6 on track 79.
 Sector with MFM timing violation sector 6 track 79
 Short Track 79

Let’s first look at the Sector with No Data and Duplicate Sector protection for this game.

First we look at the layout of track 00:
**
Track Layout Information: 6280 Bytes - length=199.973 ms
ID Good/Bad=8/3 - Data Good/Bad=7/2 - Synch Good/Bad =20/5
**

GAP1 501 bytes length=15978.41 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
15 472 |66 16450 202 BAD|38 1197 0|NO DATA |0 0 0
0 0 |1 17850 223 OK |37 1175 0|515 16385 OK 0 0 3.98|38 1206 0
15 477 |2 37319 202 BAD|38 1196 0|515 16362 BAD 0 0 3.97|38 1197 0
15 479 |3 56758 222 OK |37 1173 0|515 16355 OK 0 0 3.97|38 1203 0
15 475 |4 76188 221 OK |37 1173 0|515 16378 OK 0 0 3.98|38 1203 0
15 475 |5 95641 222 OK |37 1174 0|515 16413 OK 0 0 3.98|38 1206 0
15 476 |6 115135 222 OK |37 1175 0|515 16424 OK 0 0 3.99|38 1211 0
15 477 |7 134646 222 OK |37 1176 0|515 16469 BAD 0 0 4.00|38 1208 0
15 482 |8 154205 223 OK |37 1177 0|515 16453 OK 0 0 3.99|38 1216 0
15 479 |9 173755 223 OK |37 1180 0|515 16475 OK 0 0 4.00|38 1214 0
15 478 |66 193327 203 BAD|203 6442 0|NO DATA |0 0 0
-----------+------------------+-----------+---------------------------+------------

As we can see we have two sectors 66 (DUP) one located at the beginning of the track and
one located at the end of the track. Furthermore these two sectors have no associated data
field (SND).

If we look at the track buffer after the GAP1 we have:
+ GAP2 15 bytes @15978 us length=472.50 us - TMV=0 BRD=0
 01f5 15978 4000 ff ff ff ff ff ff ff ff ff ff ff fc a1 a1 a1
= ID=66 7 bytes @16450 length=202.43 T=0 H=0 S=66 Z=512 CRC=c240 *** BAD *** TMV=0 BRD=0 BS=1
 0204 16450 4000 fe 00 00 42 02 c2 40 ...B..@
+ GAP3 38 bytes @16653 us length=1197.20 us - TMV=0 BRD=0 BS=0 IDG=0
 020b 16653 3968 79 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 y...............
 021b 17162 4000 09 09 09 09 09 09 0f ff ff ff ff ff ff ff ff ff
 022b 17671 4000 ff ff f0 a1 a1 a1
= ID=1 7 bytes @17850 length=223.20 T=0 H=0 S=1 Z=512 CRC=ca6f OK TMV=0 BRD=0 BS=0
 0231 17850 4000 fe 00 00 01 02 ca 6f o
+ GAP3 37 bytes @18073 us length=1175.83 us - TMV=0 BRD=0 BS=0 IDG=0
 0238 18073 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 0248 18583 4000 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 00 00 00 00 NNNNNN..........
 0258 19092 4000 00 00 a1 a1 a1
= DATA ID=1 515 bytes @19249 us length=16385.97 us - CRC=dfc4 OK - TMV=0 BRD=0 BS=0
 025d 19249 3968 fb 00 00 4e 4e 4e 4e 4e 4e 57 cb a5 00 02 02 01 ...NNNNNNW......
 026d 19760 3968 00 02 70 00 d0 02 f8 05 00 09 00 01 00 00 00 4e ..p............N
 027d 20269 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 028d 20777 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 00 00 00 NNNNNNNNNNNNN...
 029d 21286 3968 00 00 00 00 00 00 00 00 00 f5 f5 f5 fe 4f 00 06 O..
 02ad 21796 3968 02 f7 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e ..NNNNNNNNNNNNNN
 02bd 22303 4000 4e 4e 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 00 00 NNNNNNNN........
 02cd 22811 3968 00 00 00 00 f5 f5 f5 fb e5 e5 e5 e5 e5 e5 e5 e5
 02dd 23319 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 02ed 23829 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 02fd 24339 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 030d 24849 4000 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5
 031d 25360 3968 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5

After a long GAP1 (501 bytes) we have an ID field at location $204 for a sector 66 ($42) and
after a GAP we find another ID field at location $231 for a sector 1. The second ID field
follows immediately the first one and therefore the FDC can’t find the DAM for sector 66
within 48 bytes and reports an RNF.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 44 / 53

Personal note: inside sector 1  investigate kind of synch seq followed by strange short
IDAM, followed by GAP and kind of synch and DAM? (Not detected but very strange)

If we now look at the end of the buffer
+ GAP2 15 bytes @192848 us length=478.46 us - TMV=0 BRD=0
 17a7 192848 4000 00 00 00 00 00 00 00 00 00 00 00 00 a1 a1 a1
= ID=66 7 bytes @193327 length=203.47 T=0 H=0 S=66 Z=512 CRC=c240 *** BAD *** TMV=0 BRD=0 BS=1
 17b6 193327 4000 fe 00 00 42 02 c2 40 ...B..@
+ GAP3 203 bytes @193530 us length=6442.18 us - TMV=0 BRD=0 BS=0 IDG=0
 17bd 193530 3968 79 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 y...............
 17cd 194040 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 17dd 194550 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 17ed 195059 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 17fd 195568 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 180d 196077 3968 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 181d 196587 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 182d 197097 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 183d 197607 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 184d 198118 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 185d 198629 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 186d 199139 4000 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09
 187d 199648 3968 09 09 09 09 09 09 09 09 09 09 09

We see an ID field starting at byte 6067 followed by a long long GAP of $09 till the end. The
ID field indicates a sector 66 ($42) but no DAM can be found within 48 bytes and therefore a
read sector command returns a RNF (record not found) status for this sector (SND). As we
already have found the same sector 66 at the beginning of the track we are in presence of
Duplicate Sector (DUP).

If we zoom we can see that the first ID
66 is followed by a gap and followed by
another ID without the normal data field.

What looks strange is the fact that the
fist ID is located at about 16500 µs.
This is almost enough room for an extra
sector especially if we have a sector
located at the end of the track with data
over index. However this does not
seems to be the case and therefore this
space is occupied by a GAP1

Now we are going to look at track 79

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 45 / 53

We can first see that we have short track with less than 6000 bytes
 Stream file 'NightShift\NightShift(1-2)79.0.raw' 5 rot - Avg RPM=300.203

**
Track Layout Information: 5993 Bytes - length=199.971 ms
ID Good/Bad=9/0 - Data Good/Bad=8/1 - Synch Good/Bad =18/1
**

GAP1 60 bytes length=2034.68 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
15 500 |1 2535 234 OK |37 1235 0|515 17244 OK 0 0 4.19|38 1271 0
15 502 |2 23023 234 OK |37 1240 0|515 17248 OK 0 0 4.19|38 1268 0
15 501 |3 43517 234 OK |37 1237 0|515 17202 OK 0 0 4.18|38 1268 0
15 501 |4 63961 234 OK |37 1238 0|515 17183 OK 0 0 4.17|38 1268 0
15 502 |5 84388 234 OK |37 1238 0|515 17203 OK 0 0 4.18|40 1339 0
15 503 |6 104907 234 OK |38 1236 1|515 17018 BAD 982 946 4.13|4 125 0
54 1816 |7 125339 235 OK |37 1239 0|515 17260 OK 0 0 4.19|38 1274 0
15 503 |8 145854 234 OK |37 1235 0|515 17201 OK 0 0 4.18|38 1273 0
15 502 |9 166302 234 OK |37 1234 0|515 17226 OK 0 0 4.18|455 14973 0
-----------+------------------+-----------+---------------------------+------------

This is due to the fact that each of the sectors in this track is a long sectors (all are about
17200 ms long) we can also see that the sector 6 contains a lot of border bits (in ambiguous
area) and a lot of timing violations. Therefore let’s look more carefully at this sector:

We can see that in the data block of the sector we have random flux reversals that are
equivalent to an “unformatted” area. Of course as indicated by the orange color this sector
returns random values (fuzzy bits). Therefore this track cumulates 5 protections which cannot
be reproduced without a dedicated hardware.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 46 / 53

8.8 Barbarian
The game Barbarian (Psygnosis) has the following protections:

 Non Standard Number of sector: Track 0 only one sector!
 Track Not Found: Track 74-79
 Invalid Synch Sequence: Track 0, 45, 48 …
 Data Into Gap: Possibly in track 0
 Invalid Data into GAP track 14 disk A
 Sector 18 with bad data track 72 disk B

As already mentioned the Panzer/KFPanzer programs cannot directly detect Data Into Gap
however when an Invalid Synch Sequence is found it is usually interesting to see if there is a
DIG following the ISS. Due to the well-known behavior of the FDC, the read-track command
read incorrectly most of the data of the track. The only way to read the data correctly is to
add a Synch mark just before the data to read.

If we look at track 0 of Barbarian we first see that the layout is rather unusual as the track
has only one sector of 512 bytes!

After this sector the track is filled with character $12. But close to the end (this value may
vary) we find an $A1 Synch Mark followed immediately by a sequence of 8 * $09 followed by
a sequence $00 bytes until the end of the track.

 1834 193807 3908 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 1844 194308 3908 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 1854 194808 3908 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 1864 195308 3908 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 1874 195808 3908 12 12 12 12 12 12 16 a1 09 09 09 09 09 09 09 09
 1884 196305 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 1894 196805 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18a4 197307 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18b4 197809 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18c4 198311 3938 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18d4 198813 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18e4 199314 3908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 18f4 199814 3908 00 07 0c 00 48 48 HH

This can definitively be used as a protection even though it is easy to reproduce such a track.

On track 48 we have a different sort of invalid Synch sequence:
 186b 195393 3908 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
 187b 195893 3878 42 42 42 42 42 41 e4 24 24 24 24 24 21 a1 a1 a1 BBBBBA.$$$$$!...
 188b 196391 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 189b 196891 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 18ab 197392 3938 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 18bb 197893 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 18cb 198394 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 18db 198895 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
 18eb 199395 3908 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 c0 96 21 !
 18fb 199896 3878 2b 09 09 +..

Here we have a very very long sequence of $A1 Synch. Again this is an invalid sequence
that can be detected using the read-track command.

TODO byte 30 trk 79 has to be 00 or FF

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 47 / 53

8.9 Colorado
Important Note: I do not have the original diskette for Colorado. I have received a track’s
content from Ijor generated with a DC cartridge and I have “recreated” this track on a blank
diskette. The analysis has been done on this diskette and therefore results might not be as
accurate as on an original.

On this track I find the following protections:
 Intra-sector Bit-rate Variation (IBV)
 Sector with Fuzzy Bits (FZD) and Bad Data (SBD)
 Invalid Track Number (ITN), Sector Bad ID (SBI), Invalid ID Field (IIF)

Here is a plot of the complete track:

If we zoom in the first sector 1 we can see some large intra-sector clock rate variation.

If we look at the Intra-sector Bit-rate Variations we can recognize a macrodos protection
from speedlock.

Here we can see that the data field is roughly dived into four segments. In the first segment
we have normal timing, in the second segment we have above normal clock values, in the
third segment we have below normal clock values, followed by the last segment with normal
values. This corresponds well to the definition of IBV where we have the sector divided into 4
regions with timing: normal, above, below, and normal. Note that each segment is about 128
bytes and that the above and below clock rate compensate. This means that the overall
length of this sector is 16487.46 µs which is very close to a normal 16480 µs sector.

Probably due to the quick shifting of the clock we have some border bits and therefore the
sector also reads with fuzzy bytes and CRC error.

Now if we read the complete track and look at the end of the buffer we have some strange
values:

+ GAP2 14 bytes @190845 us length=438.03 us - TMV=0 BRD=0
 1776 190845 4031 ff ff ff ff ff ff e1 a1 a1 a1 a1 a1 a1 a1
= ID=150 7 bytes @191283 length=230.14 T=142 H=164 S=150 Z=2048 CRC=1214 * BAD * TMV=9 BRD=4 BS=0
 1784 191283 4031 ff 8e a4 96 84 12 14
+ GAP3 264 bytes @191513 us length=8466.75 us - TMV=303 BRD=108 BS=2 IDG=0
 178b 191513 4063 b2 8c 20 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e .. NNNNNNNNNNNNN
 179b 192032 4031 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN

Here we can see an abnormally long synch sequence followed by an IDAM with the following
errors: ITN, SBI, and IIF. However as I do not have the original I am not sure if the end of the
track has been “regenerated” correctly?

http://www.atari-forum.com/profile.php?mode=viewprofile&u=976

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 48 / 53

8.10 Turrican
Turrican contains a lot of interesting protection mechanisms. You should refer to information
provided by Markus Fritze on Turrican protection and the Atari Forum

We are going to look at the following protections:
 Non-standard sector size 1 * 512 + 5 * 1024 (total of 5632 bytes)
 No Flux reversal Area
 Sector within Sector - with cell bit shifting allowing to read clock bits as data!
 Fuzzy sector with CRC error
 Data Over Index

The read track provides the following layout:
**
Track Layout Information: 6290 Bytes - length=199.98 ms
ID Good/Bad=4/1 - Data Good/Bad=1/4 - Synch Good/Bad =10/42
**

GAP1 1 bytes length=63.00 us
-----------+------------------+-----------+---------------------------+------------
GAP2 |ID |GAP3 |DATA |GAP4
Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS
-----------+------------------+-----------+---------------------------+------------
517 16488 |3 16551 222 OK |38 1177 1|1027 32677 BAD 0 0 3.98|13 415 0
6 172 |6 51217 224 OK |37 1185 0|1027 32703 OK 0 0 3.98|4 127 0
7 223 |0 85682 217 BAD|38 1183 0|1027 32503 BAD 0 1 3.96|8 252 0
863 27242 |2 147081 222 OK |37 1175 0|1027 32835 BAD 0 0 4.00|10 318 0
6 191 |5 181825 223 OK |37 1178 0|525 16753 BAD 0 0 3.99|0 0 0
-----------+------------------+-----------+---------------------------+------------

We can see that the FD uses several 1024 bytes sector and that the last sector is truncated
indicating Data over Index.

The track also contains a long area without flux reversals. A normal FD controller / FD drive
can't create such a long spacing between two flux reversals. The lack of flux reversal
reversals increase the gain on the head (AGC), eventually leading to an amplified level that
generates a fake flux reversal (fuzzy bits) and the PLL data separator can't lock onto the
clock/data bits. This area is extremely difficult to reproduce even with specialized HW. As
explained above this result in Fuzzy bytes read in sectors containing this area (which also
imply reading the sector with CRC error). It is hard to see on the following plot this area:

But if we zoom to the concerned area we
can see that there is no flux reversal (neither
data nor clock flux reversals) in the range
89500-94000 (that’s more than 4 ms).

This area is located inside the sector 0 but
we will see that this sector 0 in fact contains
sector 16 and sector 1. This will be detailed
below.

http://www.sarnau.info/atari:protection_turrican
http://www.atari-forum.com/viewtopic.php?f=47&t=19948&start=25#p189968

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 49 / 53

To get a more accurate view of all sectors we use the all sectors plot:

Here we can see clearly that sector 0 contains sector 16 and sector 1 (Sector within sector)
and that sector 16 fully contains sector 1 of 512 bytes (sector within sector within sector). We
can also see that sector 0 and sector 16 reads with fuzzy bits (orange bar on the plot). The
reason is that sector 0 and sector 16 contains the no flux reversal area.

However it is interesting to note that the sector 1 included in sector 0 and 16 reads correctly
as it is located beyond the no flux reversal area.

We can also see that the sector 5 has a large portion of its data over the index.

All this is summarized in the all sectors layout:
All Sectors Layout Information:
------------------+-------+--+-------
ID |GAP3 |DATA |GAP4
Sct Pos Lgt CRC|Bt Lgt |Bt Pos Lgt CRC TMV BRD Clk DOI FZP |Bt Lgt
------------------+-------+--+-------
3 16551 222 OK |37 1177|1027 17952 32751 OK 0 0 3.99 0 0 |10 321
6 51217 224 OK |37 1185|1027 52627 32703 OK 0 0 3.98 0 0 |4 127
0 85682 223 OK |37 1177|1027 87082 32637 BAD 0 1 3.97 0 217 |26 821
16 87721 222 OK |37 1173|1027 89118 32621 BAD 0 1 3.97 0 153 |10 297
1 94350 222 OK |37 1172|515 95745 16402 OK 0 0 3.98 0 0 |10 317
4 112655 221 OK |37 1168|1027 114045 32527 OK 0 0 3.96 0 0 |10 318
2 147081 222 OK |37 1175|1027 148479 32835 OK 0 0 4.00 0 0 |10 318
5 181825 223 OK |37 1178|1027 183226 32794 OK 0 0 3.99 513 0 |10 317
------------------+-------+--+-------

Another interesting mechanism is used: Sector 0 start with the following bytes:
Detail buffer content for sector 0 with 1027 bytes
= DATA ID=0 1027 bytes @87082 us length=32637.85 CRC BAD CLK=3.97 TMV=0 BRD=1 DOI=0
 *** Fuzzy Sector *** starting at byte position 217
 0000 87082 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 7f ff ff ff ff ff ff ff ff ff ff ff ff ff ff .�..............
 0010 87596 3968 00 a1 a1 a1 fe 07 00 10 03 bb 21 4e 4e 4e 4e 4e !NNNNN
 ff 0a 0a 0a 00 f8 7f e7 fc 00 4e 10 90 90 90 90 �...N.....
 0020 88103 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN
 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
 0030 88614 3968 4e ff ff ff ff ff ff ff ff ff ff ff fe 14 14 14 N...............
 90 00 00 00 00 00 00 00 00 00 00 00 00 a1 a1 a1
 0040 89124 4000 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0050 89629 3968 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00

In green we can see inside data block the presence of 3 synch character followed by the ID
block of sector 16 (sector within sector) however if we look further we do not see directly the
synch mark for the data block. Instead we see the presence of 3 bytes with value $14
followed by a byte $00. If we turn the “clock” flag of the KFAnalyze program it also print the
clock value of the decoded byte. Here we can see that in fact the $A1 synch bytes are in fact
in the “clock” bytes. The synch mark detector will take care of shifting by a half cell to
correctly read the data of sector 16. This result in reading the “data” bytes for sector 0 and
reading the “clock” bytes for sector 16. Not very useful but fun 

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 50 / 53

8.11 Operation Neptune
Operation Neptune (Smash) uses the following protection mechanisms:

 Invalid Data in Gap – Track 50
 Sector with Fuzzy Bits (FZD) and Bad Data (SBD) – Track 75-78 Side 1

We use this game to demonstrate the usage of Invalid Data in Gap. Normally the value of
data written in Gap3a (post-index) and Gap4 (post-data) is $4E. However this value is not
critical for the FDC and any value can be used in these gaps. In Operation Neptune this
value is replaced by the invalid character $F7. Normally all the Gap information is written
during the format command (write track command) and the usage of $F7 is not permitted as
it is used to send to CRC character. Therefore it is not possible to generate such a track on
an Atari using the standard FDC. If we look at the beginning of the track we find:

Detail buffer content 6285 (0x188d) bytes

+ GAP2 78 bytes @0 us length=2497.88 us - TMV=0 BRD=0
 0000 32 4000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0010 539 3938 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0020 1045 3938 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0030 1551 3938 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff
 0040 2055 3968 ff ff ff ff ff ff ff ff ff ff fe a1 a1 a1
= ID=1 7 bytes @2497 length=219.73 T=50 H=0 S=1 Z=512 CRC=0bee OK TMV=0 BRD=0 BS=0
 004e 2497 4000 fe 32 00 01 02 0b ee .2.....
+ GAP3 37 bytes @2717 us length=1173.24 us - TMV=0 BRD=0 BS=0 IDG=21
 0055 2717 3938 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 0065 3224 3968 f7 f7 f7 f7 f7 f7 00 00 00 00 00 00 00 00 00 00
 0075 3733 3938 00 00 a1 a1 a1
= DATA ID=1 515 bytes @3890 us length=16366.08 us - CRC=8823 OK - TMV=0 BRD=0 BS=0
 007a 3890 3968 fb 70 00 80 00 f0 00 80 0b 00 8d 30 00 10 00 30 .p.........0...0

As you can see the value of the data in Gap3a are set to $F7 (highlighted in red)

Now if we look at the end of the same data block (first data block):
 026a 19656 3968 00 c0 00 fe 00 c0 03 00 95 01 ff 00 57 01 ff 2a W..*
 027a 20161 4000 af 88 23 ..#
+ GAP4 40 bytes @20256 us length=1273.10 us - TMV=0 BRD=0 BS=0 IDG=39
 027d 20256 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 028d 20765 4000 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 029d 21273 3938 f7 f7 f7 f7 f7 f7 f7 f7

Here we can see that we also have the value $F7 in Gap4. This protection repeats for all
sectors of the track.

 And at the end of the track we have the last Gap4 filled with $7F until the end of the track:
+ GAP4 731 bytes @176866 us length=23105.60 us - TMV=0 BRD=0 BS=0 IDG=730
 15b2 176866 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 15c2 177374 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 15d2 177882 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 15e2 178390 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 15f2 178898 4000 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 1602 179405 3938 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 1612 179912 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
...
 1852 198129 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 1862 198636 3938 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 1872 199144 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7
 1882 199651 3968 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7

This protection can be tested easily by using the read track command but cannot be
duplicated with a WD1772 FDC.

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 51 / 53

9 References
9.1 Documents / Articles
 Article on protection "copy me I want to travel" from Claus Brod the expert who wrote the

book Scheibenkleiste covering all sort of interesting details about floppy disks, hard disks,
RAM disks, CD-ROMs and other mass storage devices for the Atari (Claus web site).

 Probing the FDC: Learn the Secrets of your Floppy - By David Small
 Atari Protected Disk Image Format & Atari Protected Disk Image Format
 Floppy disk formatHow can I copy my copy-protected Atari software
 An interview with Rob Northen
 Dungeon Master Copy Protection
 Disk Backup Programs: Do they really work
 Teac & Citizen Micro Floppy Disk Drive Specification
 Floppy from HP
 How to HD install Pacland (MFM format) using WHDLoad
 Commodore C1581-handler
 S100-Manuals - Disks and Disk Drives
 Wipe Swap File
 SpinRight Technical note

9.2 Forums Threads
 Looking for Rob Northen originals
 Rob Northern Code Found
 Weak Bits, Bit-rate var., data under index: Copy Protection
 Questions Regarding STT Images
 Protected disk images project & CAPS
 Ideas about ST floppy image make program for PC
 PASTI Project
 Copy II ST
 Looking for AntiBitos 1.4 by Illegal
 Most memorable Hack/crack
 Protected Disk Image Project Seeking Beta Tester
 Ideas about ST floppy image make program for PC
 Looking for DMA file under interrupt
 Mega STE Specifics
 Copy Protected Disks
 Gcopy DIM file
 ST Protection routines
 Putting a second internal floppy drive in the STF
 RamDisk and ATARI-ST Disk IO
 X-out original protected

http://www.clausbrod.de/download/atari/track41.rtf
http://www.clausbrod.de/cgi-bin/view.pl/Atari
http://www.clausbrod.de/cgi-bin/view.pl/Atari/Scheibenkleister
http://www.clausbrod.de/cgi-bin/view.pl/Atari
http://www.atarimagazines.com/startv1n2/ProbingTheFDC.html
http://members.chello.nl/taf.offenga/atp15.txt
http://members.chello.nl/taf.offenga/app/software/atp/ATP16.htm
http://www.answers.com/topic/floppy-disk-format
http://www.answers.com/topic/floppy-disk-format
http://members.tripod.com/whdloadrules/rob_northen_interview.html
http://dmweb.free.fr/?q=node/210
http://www.cyberroach.com/analog/an11/backup.htm
http://www.teac.de/dspd/downloads/datasheets/dl_fd05hf8630.pdf
http://www.citizen.co.uk/pdf/x1de00a.pdf
http://docs.hp.com/en/B9106-90013/floppy.7.html
http://zakalwe.fi/~shd/amiga-cracking/mfminstalling.txt
http://www.cs.tut.fi/~albert/Dev/1581/
http://www.s100-manuals.com/Disk-drives.htm
http://cypherpunks.venona.com/date/1996/01/msg01206.html
http://www.grc.com/files/technote.pdf
http://www.atari-forum.com/viewtopic.php?t=6454&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=3023&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=9012
http://www.atari-forum.com/viewtopic.php?t=1241&postdays=0&postorder=asc&highlight=mfm+sync+byte&start=0
http://www.atari-forum.com/viewtopic.php?t=3454
http://www.atari-forum.com/viewtopic.php?t=6571
http://www.atari-forum.com/viewtopic.php?t=5080&highlight=copy+protected+disk
http://www.atari-forum.com/viewtopic.php?t=3583&highlight=copy+disk+protection
http://www.atari-forum.com/viewtopic.php?t=6496&start=0&postdays=0&postorder=asc&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=4113&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=3284&highlight=copy+disk+protection
http://www.atari-forum.com/viewtopic.php?t=6571&highlight=fdc
http://www.atari-forum.com/viewtopic.php?t=5080&highlight=copy+protected+disk
http://www.atari-forum.com/viewtopic.php?t=4409&highlight=lattice
http://www.atariage.com/forums/index.php?showtopic=51523&pid=819085&mode=threaded&show=&st=&
http://www.atari-forum.com/viewtopic.php?t=6090&postdays=0&postorder=asc&start=0&sid=38697120aac930de9f40d00adfb141c8
http://www.atari.st/forum/read.php?f=8&i=2939&t=2921
http://www.atari-forum.com/viewtopic.php?t=7687
http://www.atari-forum.com/viewtopic.php?t=6681&highlight=internal+book
http://www.atari-forum.com/viewtopic.php?t=7657

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 52 / 53

9.3 Related Patents
You may want to look at the following patents that describe some protection mechanisms:
 Copy Protection for computer Disc 4,849,836
 Computer Program protection method 4,462,078
 Hardware key-on-disc for copy protecting magnetic storage data 4,577,289
 Copy protecting system for software protection 4,584,641
 Techniques for preventing unauthorized copying of information recorded on a recording

medium and a protected recording medium 4,734,796
 Copy protection disc format controller 5,432,647
 Data Input Circuit with Digital Phase Lock Loop

9.4 Web Sites
 Atari ST FD (Hardware view)
 Atari ST FD (Software view)
 Atari FD Protection/Preservation
 Atari ST Copy Protections (Markus Fritze)
 Protections sur Atari ST/Amiga
 PASTI Project
 Software Preservation Society
 KryoFlux Products & Services Limited
 C64 Preservation Project (Commodore)
 Atari Disk Image FAQ
 Tim Mann's TRS-80 Pages
 The .ADF (Amiga Disk File) format FAQ
 Introduction to Magnetic Recording
 Funny presentation about perpendicular magnetic recording !!!
 Individual Computer Support
 The Central Point Option Board
 SpinRite's Defect Detection Magnetodynamics
 The Gentle art of Protection
 The XCOMP/2 home page
 LIBDSK library for accessing discs and disc image files
 WinUAE Amiga Emulator

9.5 FDC & Related Information
 Western Digital Corporation 5.25" WD1770/1772 Floppy Disk Controller/Formatter
 8272 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER
 Intel 82077AA FDC Datasheet
 Commodore C1581 - WD1770 FLOPPY DISK CONTROLLER
 PC87310 (SuperI/OTM) Dual UART with Floppy Disk Controller and Parallel Port
 Hard Disk Data Encoding / Decoding.
 Cyclic Redundancy Check, CRC16-CCITT, The Great CRC Mystery Terry Ritter
 Atari ST – Floppy Disk Programming – Jean Louis-Guérin
 WD1772 Floppy Disk Formatter/Controller - Western Digital Corporation

http://www.uspto.gov/patft/index.html
http://www.google.com/patents?vid=USPAT4849836
http://info-coach.fr/atari/hardware/FD-Hard.php
http://info-coach.fr/atari/software/FD-Soft.php
http://info-coach.fr/atari/software/preservation.php
http://www.sarnau.info/#atari_st_copy_protections
http://www.cpc-power.com/aitpast/index.php?page=dossier&id=5
http://pasti.fxatari.com/
http://www.softpres.org/
http://www.kryoflux.com/
http://rittwage.com/c64pp/dp.php?pg=protection
http://www.atarimax.com/ape/docs/DiskImageFAQ/
http://www.tim-mann.org/misosys.html#filfo
http://lclevy.club.fr/adflib/adf_info.html
http://tpub.com/neets/book23/96.htm
http://www.hitachigst.com/hdd/research/recording_head/pr/PerpendicularAnimation.html
http://www.jschoenfeld.com/indexe.htm
http://retro.icequake.net/dob/
http://www.grc.com/srphysics.htm
http://scp.xradiograph.com/archives/2006/01/the-gentle-art-of-protection
http://www.geocities.com/SiliconValley/Pines/7885/Download/DownloadXComp.html
http://www.seasip.demon.co.uk/Unix/LibDsk/
http://www.winuae.net/
http://dev-docs.atariforge.net/files/WD1772.pdf
http://andercheran.aiind.upv.es/~amstrad/docs/i8272/8272sp.htm
http://www.osdever.net/documents/82077AA_FloppyControllerDatasheet.pdf?the_id=41
http://www.devili.iki.fi/Computers/Commodore/C1581/Service_Manual/Page_09.html
http://eshop.engineering.uiowa.edu/NI/pdfs/01/05/DS010591.pdf
http://www.pcguide.com/ref/hdd/geom/data.htm
http://www.erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html
http://www.joegeluso.com/software/articles/ccitt.htm
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM

 Atari Copy Protection Based on Key Disk– Revision 1.0

Copyleft Jean Louis-Guérin (DrCoolZic) – November 2011 Page 53 / 53

10 Document history
 V1.0 Major Revision - Added information on low level format, particularly about the write

splice. Added description about KFPanzer and KFAnalyze. Now the analysis of games
uses the output from KFAnalyze and especially the nice plots. Added the Short/Long
Track and No Flux reversal Area protections. Remove documentation of Analyze
program. Added more analysis of games (Turrican and others). New information about
games protection based on new KFPanzer capabilities. Added more links to new sites.
Added reference to the new KryoFlux board and related - After 5 years of development I
consider the document mature enough to go to version 1.0! - November 2011

 V0.9 Major Revision - Clean-up text based on feedback. Modified documentation to
reflect the usage of the new Panzer (Protection ANalyZER) program. Added ID Fuzzy
Bits, Invalid Data in Gap, and Non Standard DAM Protection. Added a section on
Preservation for each of the protections. Added description for Barbarian, Operation
Neptune Game. Work with Gothmog (Christophe Fontanel) on getting more accurate
information on Dungeon Master fuzzy bits protection – September 2010

 V0.8 Major Revision: Added taxonomy for the different protection categories. Rewrote of
large portion of the explanations about fuzzy bits. Added 5 new protections: Invalid ID
Field, Non Standard IDAM, Sector over Index pulse, Missing Track and Sector within
Sector. Added description for several games (Theme Park Mystery, Computer Hits
Volume 2, Kick Off 2, Colorado). Better documented Intra-sector Bit Variation with
reference to Colorado. For the first time lots of diskettes (over 50) have been tested and
references for them have been entered in the document. And again lots of clean-up –
October 2007

 V0.7 several modifications based on feedback from Ijor and Obo. Added a new section
on weak bits based on US patent and a section on Invalid character during format. Plus
lots of miscellaneous cleanup. – January 2007

 V0.6 Modifications based on feedback from Ijor, I have added one section about Double
Density diskette format, the Invalid sector number protection, and the intra-sector variable
bit rate protection – December 2006

 V0.5 Incorporated feedback from Gothmog about the DM protection patent, added a
section with several US patent about protection, modified the section on fuzzy bits,
modified the fuzzy bit detection in WD1772 DPLL – December 2006

 V0.4 Complete documentation cleanup and links verification - November 2006.
 V0.3 Major Revision: Merged several related sector protections, modified extensively the

description of several protections, added section on example of protections, added
analyze program short presentation, added DPLL presentation, and added new
protections: PAT and NAT. - October 2006.

 V0.2 Minor correction based on feedback - June 2006.
 V0.1 Initial writing - May 2006.

http://www.atari-forum.com/profile.php?mode=viewprofile&u=517
http://www.atari-forum.com/profile.php?mode=viewprofile&u=976
http://www.atari-forum.com/profile.php?mode=viewprofile&u=830

	1 Table of Contents
	2 Presentation
	3 Terminology used in this document
	4 Copy Protection Summary Table
	5 Copy Protection Detail Description
	5.1 Protections based on Layout
	5.1.1 Number Of Sectors (NOS)
	5.1.2 Sector Sizes
	5.1.3 Duplicate sector
	5.1.4 Invalid Sector Number
	5.1.5 Invalid ID Field
	5.1.6 Invalid Data in Gap
	5.1.7 Non Standard IDAM
	5.1.8 Non Standard DAM
	5.1.9 Sector with No Data
	5.1.10 Sector with bad ID
	5.1.11 Sector with bad Data
	5.1.12 Data Field Over Index-pulse
	5.1.13 Data Field Beyond Index-pulse
	5.1.14 Extra Tracks
	5.1.15 Missing Tracks
	5.1.16 Data into GAP
	5.1.17 Invalid Synch-mark Sequence
	5.1.18 Synch Mark in Data
	5.1.19 Track Layout Pattern
	5.1.20 Invalid Track Number
	5.1.21 Sector Within Sector

	5.2 Protections based on Fuzzy Bits
	Fuzzy bits in Data
	5.2.2 Fuzzy Bits in ID
	5.2.3 Flux Reversals in Ambiguous Area
	5.2.4 MFM Timing Violation
	5.2.5 No Flux reversals Area
	5.2.6 Weak Bit

	5.3 Protections based on Bit-rate Variation
	5.3.1 Long / Short Sector
	5.3.2 Long/Short Track
	5.3.3 Intra-Sector Bit-rate Variation

	5.4 Protections based on Track Alteration
	5.4.1 Physical Alteration of Track

	6 Atari Low-Level Formats
	6.1 “Standard” 9-10-11 Sectors of 512 Bytes Format
	6.2 “Standard” 128-256-512-1024 Bytes / Sector Format

	7 WD1772 Floppy Disk Controller
	7.1 WD1772 DPLL Input Circuitry
	7.2 WD1772 Detection of Fuzzy Bits

	8 Analysis of Games/Programs
	8.1 Dungeon Master (FTL Inc.)
	8.2 D50 Editor (DrT)
	8.3 Populous (Electronic Arts)
	8.4 Theme Park Mystery (Image Works)
	8.5 Computer Hits Volume 2 (Beau-Jolly)
	8.6 Kick Off 2 (Anco Software)
	8.7 Night Shift
	8.8 Barbarian
	8.9 Colorado
	8.10 Turrican
	8.11 Operation Neptune

	9 References
	9.1 Documents / Articles
	Forums Threads
	9.3 Related Patents
	9.4 Web Sites
	FDC & Related Information

	10 Document history

