
3

3

HI-TECH Software
A division of Gretetoy Pty. Ltd. ACN 002 724 549

PO Box 103 Alderley QLD 4051 Australia
Phone +61 7 3355 8333 Fax +61 7 3355 8334

E-mail: hitech@htsoft.com
Web: http://www.htsoft.com

FTP: ftp.htsoft.com

Second Printing (c), March 2000

Copyright © 1984-2000 HI-TECH Software
All rights reserved
Printed in Australia

are’s

ams do
raries
 this

agrees
e are

e that
YOU SHOULD CAREFULLY READ THE FOLLOWING BEFORE INSTALL-
ING OR USING THIS SOFTWARE PACKAGE. IF YOU DO NOT ACCEPT
THE TERMS AND CONDITIONS BELOW YOU SHOULD IMMEDIATELY
RETURN THE ENTIRE PACKAGE TO YOUR SUPPLIER AND YOUR
MONEY WILL BE REFUNDED. USE OF THE SOFTWARE INDICATES
YOUR ACCEPTANCE OF THESE CONDITIONS

To ensure that you receive the benefit of the warranty described below, you should complete and sign
the accompanying registration card and return it to HI-TECH Software immediately.

SOFTWARE LICENCE AGREEMENT

HI-TECH Software, a division of Gretetoy Pty. Ltd., of 12 Blackwood St. Mitchelton QLD 4053
Australia, provides this software package for use on the following terms and conditions:

This software package is fully copyrighted by HI-TECH Software and remains the property of HI-TECH
Software at all times.

You may:
r Use this software package on a single computer system. You may transfer this package from

one computer system to another provided you only use it on one computer system at a time.

r Make copies of diskettes supplied with the software package for backup purposes provided all
copies are labelled with the name of the software package and carry HI-TECH Softw
copyright notice.

r Use the software package to create your own software programs. Provided such progr
not contain any part of this software package other than extracts from any object lib
included then these programs will remain your property and will not be covered by
agreement.

r Transfer the software package and this licence to a third party providedthat the third party
to the terms and conditions of this licence, and that all copies of the software packag
transferred to the third party or destroyed. The third party must advise HI-TECH Softwar
they have accepted the terms and conditions of this licence.

 have
ential

spective
You may NOT:

r Sell, lend, give away or in any way transfer copies of this software package to any other person
or entity except as provided above, nor allow any other person to make copies of this software
package.

r Incorporate any portion of this software package in your own programs, except for the
incorporation in executable form only of extracts from any object libraries.

r Use this package to develop life-support applications or any application where failure of the
application could result in death or injury to any person. Should you use this software to develop
any such application, you agree to take all responsibility for any such failures, and indemnify
HI-TECH Software against any and all claims arising from any such failures.

TERM

This licence is effective until terminated. You may terminate it by returning to HI-TECH Software or
destroying all copies of the software package. It will also terminate if you fail to comply with any of the
above conditions.

WARRANTY

HI-TECH Software warrants that it has the right to grant you this licence and that the software package
is not subject to copyright to which HI-TECH Software is not entitled. Certain State and Federal laws
may provide for warranties additional to the above.

LIMITATION OF LIABILITY

This software package has been supplied in good faith and is believed to be of the highest quality. Due
to the nature of the software development process, it is possible that there are hidden defects in the
software which may affect its use, or the operation of any software or device developed with this
package. You accept all responsibility for determining whether this package is suitable for your
application, and for ensuring the correct operation of your application software and hardware. HI-TECH
Software’s sole and maximum liability for any defects in this package is limited to the amount you
paid for the licence to use this software. HI-TECH Software will not be liable for any consequ
damages under any circumstances, unless such exclusion is forbidden by law.

Trade Marks

The following are trade marks of HI-TECH Software: Pacific C; HI-TECH C; Lucifer; PPD; HPD

Other trade marks and registered trade marks used in this document are the property of their re
owners.

Technical Support

For technical support on the HI-TECH C compiler, you should contact HI-TECH Soft-
ware by one of the means listed in the table below. To obtain technical support you
must have registered your compiler, by sending in the registration card found inside the
front cover of this manual. This will entitle you to 3 months free technical support,
from the time you make your first technical support request. You will also be entitled
to one free update, which will be sent to you automatically if you have returned your
registration card.
After the initial free support period, you may take out an annual support agreement to
cover this compiler. Contact HI-TECH Software or your supplier for pricing informa-
tion. The annual support agreement will provide you with priority access to technical
support, and all updates, sent to you automatically.
If you do not wish to pay for annual support, then you may send technical support re-
quests, but these will be responded to only as time permits. This may result in consid-
erable delay. Minor updates can be obtained free of charge by downloading patch files
from our WWW and ftp servers. These will correct problems with released compiler
versions. They will not upgrade from one major version to another. Upgrades may be
purchased individually.

In other countries, you may also contact the following distributors for support and sales
enquiries - always contact your supplier first for technical support. Policies of in-
dividual resellers may vary with regard to free support.

World Wide Web http://www.htsoft.com
Electronic Mail support@htsoft.com
Fax +61 7 3355 8333
Telephone +61 7 3355 8334
Postal PO Box 103 ALDERLEY

QLD 4051 Australia

Country Dealer Phone Fax E-mail
Australia HI-TECH Software +61 7 3355 8333 +61 7 3355 8334 hitech@htsoft.com
Brazil Anacom Software +55 11 453 5588 +55 11 441 5177 esouto@anacom.com.br
Canada Ximetrix Systems +1 905 681 9600 +1 905 681 3141 facts@ximetrix.ca
Denmark Digitek Instruments +45 4342 4742 +45 4342 4743 digitek@pip.dknet.dk
France Emulations +33 1 69 412 801 +33 1 60 192 950 ac@emulations.fr
Germany Reichmann

Microcomputer
+49 7141 71 042 +49 7141 75 312 ThomasReichmann@reichmann-mc.de

Ireland Ashling Microsystems +353 61 33 4466 +353 61 33 4477 ashling@iol.ie
Italy Grifo SNC +39 51 892 052 +39 51 893 661 sales@grifo.it
Japan Unidux Inc. +81 422 32 4500 +81 422 31 0331 yamato@unidux.co.jp
Netherlands Tritec Benelux BV +31 184 41 41 31 +31 184 42 36 11 development-tools@tritec.nl
Norway Component-74 Eidsvold

A/S (C74)
+47 63 95 60 10 +47 63 95 10 19 c74@riksnett.no

New Zealand Brent Brown +64 7 849 0069 +64 7 849 0069 brent.brown@clear.net.nz
Poland Amart Logic +48 22 872 46 44 +48 22 612 69 14 cichy@amart.com.pl
South Africa Avnet Kopp (Pty) Ltd +27 11 444 2333 +27 11 444 1706 Stuart@avnetkopp.co.za
Spain SPRINT TRONICA

SYSTEM SL
+34 1 319 46 97 +34 1 308 47 70 franlp@iies.es

Sweden Nohau Elektronik AB +46 40 592 200 +46 40 592 229 mj@nohau.se
Switzerland COMSOL AG +41 31 998 44 11 +41 31 998 44 18 info@comsol.ch
Taiwan CHINATECH

CORPORATION
+886 2 916 0977 +886 2 912 6641 chntech@ms2.hinet.net

UK Nohau UK Ltd +44 196 273 3140 +44 196 273 5408 cliffm@nohau.co.uk
Computer Solutions Ltd +44 1932 829460 +44 1932 829460 sales@computer-solutions.co.uk

USA HI-TECH Software LLC +1 800 735 5715 +1 407 722 2902 hitech@htsoft.com
CMX Company +1 508 872 7675 +1 508 620 6828 cmx@cmx.com

 4

 3

 2

 5

 6

 7

 8

 1

 9

 10

Introduction

Tutorials

Using HPDZ

Features and Runtime Environment

The Z80 Macro Assembler

Linker and Utilities Reference Manual

Lucifer Source Level Debugger

Library Functions

Error Messages

ZC Command Line Compiler Driver

Contents

1

1 - Introduction - 15

1.1 Typographic conventions - 15
1.2 The HI-TECH C Z80 cross compiler - 15
1.3 Installation - 15

1.3.1 MS-DOS- 15
1.3.2 INSTALL program - 16

1.3.2.1 Installation steps - 16
1.3.2.2 Custom installation - 16
1.3.2.3 Serial number and installation key - - - - - - - - - - - - - - - - - 16

1.3.3 Accessing the compiler - 17
1.4 Unix Installation - 18

1.4.1 Accessing the compiler under Unix - 18
1.5 Getting started - 18
1.6 A Sample Program - 19

1.6.1 Memory Map - 20
1.7 Using HPDZ - 20
1.8 Using ZC - 21

1.8.1 Output File Format Selection - 23
1.9 Running your program - 23

2 - Tutorials - 25

2.1 Overview of the compilation process - 25
2.1.1 Compilation - 25
2.1.2 The compiler input - 26

2.1.2.1 Steps before linking - 29
2.1.2.2 The link stage - 35

2.2 Psects and the linker - 37
2.2.1 Psects - 37

2.2.1.1 The psect directive - 38
2.2.1.2 Psect types - 39

2.3 Linking the psects - 40
2.3.1 Grouping psects - 41
2.3.2 Positioning psects - 41
2.3.3 Linker options to position psects - 42

2.3.3.1 Placing psects at an address - 42
2.3.3.2 Exceptional cases - 45
HI-TECH C Z80 compiler 1

2.3.3.3 Psect classes - 46
2.3.3.4 User-defined psects - 48

2.3.4 Issues when linking - 49
2.3.4.1 Paged memory - 49
2.3.4.2 Separate memory areas - 50
2.3.4.3 Objects at absolute addresses - 51

2.3.5 Modifying the linker options - 52

3 - Using HPDZ - 55

3.1 Introduction - 55
3.1.1 Starting HPDZ - 55

3.2 The HI-TECH Windows user interface - 56
3.2.1 Hardware requirements - 56
3.2.2 Colours - 57
3.2.3 Pull-down menus - 59

3.2.3.1 Keyboard menu selection - 59
3.2.3.2 Mouse menu selection - 59
3.2.3.3 Menu hot keys - 60

3.2.4 Selecting windows - 60
3.2.5 Moving and resizing windows - 62
3.2.6 Buttons - 63
3.2.7 The Setup menu - 63

3.3 Tutorial: Creating and compiling a C program - 64
3.4 The HPDZ editor - 69

3.4.1 Frame - 70
3.4.2 Content region - 70
3.4.3 Status line- 70
3.4.4 Keyboard commands - 71
3.4.5 Block commands - 71
3.4.6 Clipboard editing - 74

3.4.6.1 Selecting Text - 75
3.4.6.2 Clipboard commands - 75

3.5 HPDZ menus - 76
3.5.1 <<>> menu - 76
3.5.2 File menu - 77
3.5.3 Edit menu- 78
3.5.4 Options menu - 80
2

Contents

1

04
04

 105
106
06
 106
06
07
07

3.5.5 Compile menu - 83
3.5.6 Make menu - 85
3.5.7 Run menu - 89
3.5.8 Utility menu - 90
3.5.9 Help menu - 93

4 - ZC Command Line Compiler Driver- - - - - - - - - - - - - - 95

4.0.10 Long command lines - 95
4.0.11 Default Libraries - 96
4.0.12 Standard Run-Time Startoff - 96

4.1 ZC Compiler Options - 96
4.1.1 -180: Generate Z180/64180 Code - 96
4.1.2 -64180: Generate Z180/64180 Code - 96
4.1.3 -Aspec: Set ROM and RAM Addresses - - - - - - - - - - - - - - - - - - - 96
4.1.4 -AAHEX: Generate American Automation Symbolic Hex - - - - - - - - - 100
4.1.5 -ALTREG: Use Alternate Register Set- - - - - - - - - - - - - - - - - - - 100
4.1.6 -ASMLIST: Generate Assembler .LST Files - - - - - - - - - - - - - - - - 100
4.1.7 -AV: Select Avocet Symbol File - 100
4.1.8 -AVSIM: Select Avocet Symbol File - - - - - - - - - - - - - - - - - - - 100
4.1.9 -BIN: Generate Binary Output File - 101
4.1.10 -Bs: Select Small Memory Model - 101
4.1.11 -Bl: Select Large Memory Model - 101
4.1.12 -Bc: Select CP/M Memory Model - 102
4.1.13 -C: Compile to Object File - 102
4.1.14 -CLIST: Produce C Listing File - 103
4.1.15 -CPM: Generate CP/M Executable File - - - - - - - - - - - - - - - - - - 103
4.1.16 -CRfile: Generate Cross Reference Listing - - - - - - - - - - - - - - - - 103
4.1.17 -Dmacro: Define Macro - 103
4.1.18 -E: Use “editor” Format for Compiler Errors - - - - - - - - - - - - - - - 1
4.1.19 -Efile: Redirect Compiler Errors to a File - - - - - - - - - - - - - - - - - 1
4.1.20 -Gfile: Generate Source Level Symbol File - - - - - - - - - - - - - - - -
4.1.21 -Hfile: Generate Assembler Level Symbol File - - - - - - - - - - - - - -
4.1.22 -HELP: Display Help - 1
4.1.23 -Ipath: Include Search Path -
4.1.24 -Llibrary: Scan Library - 1
4.1.25 -L-option: Specify Extra Linker Option- - - - - - - - - - - - - - - - - - 1
4.1.26 -Mfile: Generate Map File - 1
HI-TECH C Z80 compiler 3

4.1.27 -MOTOROLA: Generate Motorola S-Record HEX File - - - - - - - - - - 107
4.1.28 -Nlength: Specify Identifier Significant Length - - - - - - - - - - - - - - 108
4.1.29 -O: Invoke Optimizer- 108
4.1.30 -Ofile: Specify Output File - 108
4.1.31 -OF: Optimize for Speed - 108
4.1.32 -OMF51: Produce OMF-51 Output File - - - - - - - - - - - - - - - - - - 108
4.1.33 -P: Pre-process Assembly Files - 108
4.1.34 -P8: Use 8 bit port addressing- 109
4.1.35 -P16: Use 16 bit port addressing - 109
4.1.36 -PRE: Produce Pre-processed Source Code - - - - - - - - - - - - - - - - 109
4.1.37 -PROTO: Generate Prototypes - 109
4.1.38 -PSECTMAP: Display Complete Memory Usage - - - - - - - - - - - - - 110
4.1.39 -q: Quiet Mode- 111
4.1.40 -ROMDATA - 111
4.1.41 -ROMranges - 111
4.1.42 -S: Compile to Assembler Code- 111
4.1.43 -SA: Compile to Avocet assembler source files - - - - - - - - - - - - - - 112
4.1.44 -STRICT: Strict ANSI Conformance - - - - - - - - - - - - - - - - - - - 112
4.1.45 -TEK: Generate Tektronix HEX File - - - - - - - - - - - - - - - - - - - 112
4.1.46 -Umacro: Undefine a Macro - 112
4.1.47 -UBROF: Generate UBROF Format Output File - - - - - - - - - - - - - - 112
4.1.48 -UNSIGNED: Make char Type Unsigned - - - - - - - - - - - - - - - - - 112
4.1.49 -V: Verbose Compile- 112
4.1.50 -Wlevel: Set Warning Level - 113
4.1.51 -X: Strip Local Symbols - 113
4.1.52 -Z180: Generate Z180 Code - 113
4.1.53 -Zg: Global Optimization - 113

5 - Features and Runtime Environment - - - - - - - - - - - - - 115

5.1 Output File Formats - 115
5.2 Symbol Files - 116

5.2.1 Avocet Symbol Tables- 116
5.3 Predefined Macros - 116
5.4 Supported Data Types - 117

5.4.1 8 Bit Integer Data Types - 117
5.4.2 16 Bit Integer Data Types - 117
5.4.3 32 Bit Integer Data Types - 118
4

Contents

1

5.4.4 Floating Point - 118
5.5 Absolute Variables -118
5.6 Port Type Qualifier - -119
5.7 Structures and Unions -120

5.7.1 Bit Fields in Structures - 120
5.8 Const and Volatile Type Qualifiers -120
5.9 Special Type Qualifiers - -121

5.9.1 Persistent Type Qualifier - 121
5.9.2 Code Type Qualifier - 122

5.10 Pointers - -122
5.10.1 Combining Type Qualifiers and Pointers - - - - - - - - - - - - - - - - - 122
5.10.2 Code Pointers - 123
5.10.3 Const Pointers - 123

5.11 Interrupt Handling in C -124
5.11.1 Interrupt Handling Macros - 124

5.11.1.1 The ei() and di() Macros -124
5.11.1.2 The im() Macro -125
5.11.1.3 The set_vector() Function -125
5.11.1.4 ROM_VECTOR - -125
5.11.1.5 RAM_VECTOR - -126
5.11.1.6 CHANGE_VECTOR - -126
5.11.1.7 READ_RAM_VECTOR -126

5.11.2 Interrupt Modes - 127
5.11.2.1 Setting the Interrupt Mode -127
5.11.2.2 Interrupt Mode 0 and Mode 1 - - - - - - - - - - - - - - - - - - -128
5.11.2.3 Interrupt Mode 2 - -129

5.11.3 Predefined Interrupt Vector Names- 131
5.11.4 Handling Non Maskable Interrupts - 131
5.11.5 Fast Interrupts- 132

5.12 Mixing C and Z80 Assembler Code -132
5.12.1 External Assembly Language Functions - - - - - - - - - - - - - - - - - 132
5.12.2 #asm, #endasm and asm() - 133

5.13 Signature Checking -134
5.14 Linking Programs -135
5.15 Memory Usage -135
5.16 Register Usage -135
5.17 Stack Frame Organisation -136
5.18 Function Argument Passing -137
HI-TECH C Z80 compiler 5

5.19 Function Return Values - 139
5.19.1 8 Bit Return Values - 139
5.19.2 16 Bit Return Values - 139
5.19.3 32 Bit Return Values - 140
5.19.4 Structure Return Values - 140

5.20 Function Calling Conventions for Large Model - - - - - - - - - - - - - - - - - - 141
5.20.1 Near and Basenear Functions in Large Model - - - - - - - - - - - - - - - 142

5.21 Stack and Heap Allocation - 143
5.22 Local Variables - 143

5.22.1 Auto Variables - 143
5.22.2 Static Variables - 143

5.23 Compiler Generated Psects - 144
5.24 Runtime Startoff Modules - 145

5.24.1 The powerup routine - 146
5.24.2 Using Linker Defined Symbols - 149

5.24.2.1 Clearing the bss Psect - 149
5.24.2.2 Copying the data Psect - 149
5.24.2.3 Initialising the Stack - 149

5.24.3 Customizing the Runtime Startoff Code - - - - - - - - - - - - - - - - - - 149
5.24.3.1 Copyright Message - 150
5.24.3.2 Using the New Runtime Startoff Code - - - - - - - - - - - - - - 150

5.25 Optimizing Code for the Z80 - 150
5.26 Pragma Directives - 150

5.26.1 The #pragma jis and nojis Directives - - - - - - - - - - - - - - - - - - - 151
5.26.2 The #pragma printf_check Directive - - - - - - - - - - - - - - - - - - - 151
5.26.3 The #pragma psect Directive - 151
5.26.4 The #pragma strings Directive - 152
5.26.5 The #pragma switch Directive - 153

5.27 Standard I/O Functions and Serial I/O - 153

6 - The Z80 Macro Assembler - - - - - - - - - - - - - - - - - 155

6.1 Assembler usage - 155
6.2 Assembler options - 155
6.3 Z80 Assembly language - 157

6.3.1 Character set - 157
6.3.2 Constants - 157

6.3.2.1 Numeric Constants - 157
6

Contents

1

6.3.2.2 Character Constants -158
6.3.2.3 Opcode Constants - -158

6.3.3 Delimiters - 158
6.3.4 Special characters - 158
6.3.5 Identifiers - 159

6.3.5.1 Significance of Identifiers -159
6.3.5.2 Assembler Generated Identifiers - - - - - - - - - - - - - - - - - -159
6.3.5.3 Location Counter -159
6.3.5.4 Register symbols -159
6.3.5.5 Labels -159
6.3.5.6 Temporary labels -160

6.3.6 Strings - 160
6.3.7 Expressions - 160
6.3.8 Statement format - 162
6.3.9 Program sections - 162
6.3.10 Extended Condition Codes- 163
6.3.11 Assembler directives - 163

6.3.11.1 GLOBAL -164
6.3.11.2 END -164
6.3.11.3 PSECT -165
6.3.11.4 ORG -166
6.3.11.5 EQU -166
6.3.11.6 DEFL -166
6.3.11.7 DEFB, DB - -167
6.3.11.8 DEFW - -167
6.3.11.9 DEFF -167
6.3.11.10 DEFS, DS -167
6.3.11.11 IF, COND, ELSE and ENDC - - - - - - - - - - - - - - - - - -167
6.3.11.12 MACRO and ENDM -168
6.3.11.13 LOCAL -169
6.3.11.14 REPT -170
6.3.11.15 IRP and IRPC -170
6.3.11.16 SIGNAT -172

6.3.12 Macro invocations- 172
6.3.13 Assembler controls - 172

6.3.13.1 *EJECT -173
6.3.13.2 *HEADING string -173
6.3.13.3 *INCLUDE file -173
HI-TECH C Z80 compiler 7

6.3.13.4 *LIST on|off - 173
6.3.13.5 *TITLE string - 173

7 - Linker and Utilities Reference Manual - - - - - - - - - - - - 175

7.1 Introduction - 175
7.2 Relocation and Psects - 175
7.3 Program Sections - 175
7.4 Local Psects - 176
7.5 Global Symbols - 176
7.6 Link and load addresses - 176
7.7 Operation - 177

7.7.1 Numbers in linker options - 178
7.7.2 -Aclass=low-high,... - 178
7.7.3 -Cx - 178
7.7.4 -Cpsect=class - 179
7.7.5 -Dclass=delta - 179
7.7.6 -Dsymfile - 179
7.7.7 -Eerrfile - 179
7.7.8 -F - 179
7.7.9 -Gspec - 179
7.7.10 -Hsymfile - 180
7.7.11 -H+symfile - 180
7.7.12 -Jerrcount - 180
7.7.13 -K - 180
7.7.14 -I - 181
7.7.15 -L - 181
7.7.16 -LM - 181
7.7.17 -Mmapfile - 181
7.7.18 -N, -Ns and-Nc- 181
7.7.19 -Ooutfile- 181
7.7.20 -Pspec - 181
7.7.21 -Qprocessor - 183
7.7.22 -S - 183
7.7.23 -Sclass=limit[, bound] - 183
7.7.24 -Usymbol - 183
7.7.25 -Vavmap - 183
7.7.26 -Wnum - 184
8

Contents

1

7.7.27 -X - 184
7.7.28 -Z - 184

7.8 Invoking the Linker - -184
7.9 Map Files -184

7.9.1 Call Graph Information - 185
7.10 Librarian -188

7.10.1 The Library Format - 188
7.10.2 Using the Librarian - 188
7.10.3 Examples - 189
7.10.4 Supplying Arguments - 189
7.10.5 Listing Format - 190
7.10.6 Ordering of Libraries - 190
7.10.7 Error Messages - 190

7.11 Objtohex -191
7.11.1 Checksum Specifications - 192

7.12 Cref -192
7.12.1 -Fprefix- 192
7.12.2 -Hheading - 193
7.12.3 -Llen - 193
7.12.4 -Ooutfile - 193
7.12.5 -Pwidth - 193
7.12.6 -Sstoplist - 193
7.12.7 -Xprefix - 193

7.13 Memmap -194
7.13.1 Using MEMMAP - 194

7.13.1.1 -P -194
7.13.1.2 -Wwid - -194

8 - Lucifer Source Level Debugger - - - - - - - - - - - - - - - 197

8.1 Using Lucifer -197
8.2 Symbol names in expressions -198

8.2.1 Auto Variables and Parameters - 199
8.3 Lucifer command set -199

8.3.1 The B command: set or display breakpoints - - - - - - - - - - - - - - - - 199
8.3.2 The C command: display instruction at PC- - - - - - - - - - - - - - - - - 199
8.3.3 The D command: display memory contents - - - - - - - - - - - - - - - - 200
8.3.4 The E command: examine C source code - - - - - - - - - - - - - - - - - 201
HI-TECH C Z80 compiler 9

8.3.5 The G command: commence execution - - - - - - - - - - - - - - - - - - - 201
8.3.6 The I command: toggle instruction trace mode - - - - - - - - - - - - - - - 201
8.3.7 The L command: load a hex file - 202
8.3.8 The M command: modify memory - 202
8.3.9 The P command: toggle input prompting mode - - - - - - - - - - - - - - - 202
8.3.10 The Q command: exit to operating system - - - - - - - - - - - - - - - - - 202
8.3.11 The R command: remove breakpoints - - - - - - - - - - - - - - - - - - - 202
8.3.12 The S command: step one line - 203
8.3.13 The T command: trace one instruction- - - - - - - - - - - - - - - - - - - 203
8.3.14 The U command: disassemble machine instructions - - - - - - - - - - - - 203
8.3.15 The W command: upload binary - 204
8.3.16 The X command: examine or change registers - - - - - - - - - - - - - - - 204
8.3.17 The @ command: display C variables - - - - - - - - - - - - - - - - - - - 204
8.3.18 The . command: set a breakpoint and go - - - - - - - - - - - - - - - - - - 205
8.3.19 The ; command: display from a source line - - - - - - - - - - - - - - - - 206
8.3.20 The = command: display next page of source - - - - - - - - - - - - - - - 206
8.3.21 The - command: display previous page of source- - - - - - - - - - - - - - 206
8.3.22 The / command: search source file for a string - - - - - - - - - - - - - - - 206
8.3.23 The ! command: execute a DOS command - - - - - - - - - - - - - - - - 206
8.3.24 Other commands - 207

8.4 User input and output with Lucifer - 207
8.5 Installing Lucifer on a target - 207

8.5.1 Modifying the target code - 207

9 - Error Messages - 209

10 - Library Functions - 259

11 - Index - 429
10

List of Tables
Table 2 - 1 - Configuration files . 26
Table 2 - 2 - Input file types . 28
Table 2 - 3 - clist output. 29
Table 2 - 4 - Pre-processor output . 30
Table 2 - 5 - Intermediate and Support files . 30
Table 2 - 6 - Parser output . 31
Table 2 - 7 - Code generator output. 32
Table 2 - 8 - Assembler output. 34
Table 2 - 9 - Assembler listing . 35
Table 2 - 10 - Output formats . 37
Table 3 - 1 - Colour values. 57
Table 3 - 2 - Colour attributes . 58
Table 3 - 3 - Colour coding settings . 58
Table 3 - 4 - Menu system key and mouse actions . 59
Table 3 - 5 - HPDZ menu hot keys . 61
Table 3 - 6 - Resize mode keys . 62
Table 3 - 7 - Block operation keys . 72
Table 3 - 8 - Editor keys . 73
Table 3 - 9 - Macros usable in user commands. 92
Table 4 - 1 - ZC file types . 95
Table 4 - 2 - ZC options. 97
Table 4 - 3 - Small model libraries . 101
Table 4 - 4 - Large model libraries . 101
Table 4 - 5 - CP/M model libraries . 102
Table 5 - 1 - Output file formats. 116
Table 5 - 2 - Predefined CPP symbols . 117
Table 5 - 3 - 32-bit floating point format . 118
Table 5 - 4 - Interrupt support macros and functions 125
Table 5 - 5 - Z180 interrupt vectors . 131
Table 5 - 6 - Standard run-time startoff modules . 146
Table 5 - 7 - Default powerup actions . 149
Table 5 - 8 - Pragma directives. 151
Table 5 - 9 - Supported STDIO functions . 153
HI-TECH C Z80 compiler 11

Table 6 - 1 - ZAS assembler options . 156
Table 6 - 2 - ZAS numbers and bases . 158
Table 6 - 3 - Operators . 161
Table 6 - 4 - ZAS statement formats . 162
Table 6 - 5 - Extended condition codes . 163
Table 6 - 6 - ZAS directives (pseudo-ops) . 164
Table 6 - 7 - PSECT flags . 165
Table 6 - 8 - ZAS assembler controls . 172
Table 7 - 1 - Linker Options . 177
Table 7 - 2 - Librarian Options . 189
Table 7 - 3 - Librarian Key Letter Commands . 189
Table 7 - 4 - Objtohex Options . 191
Table 7 - 5 - Cref Options . 193
Table 7 - 6 - Memmap options . 194
Table 8 - 1 - Lucifer expression forms . 198
Table 8 - 2 - Lucifer command set. 200
Table 8 - 3 - Lucifer @ command variants. 205
12

List of Figures
Figure 2 - 1 - Compilation overview. 27
Figure 3 - 1 - HPDZ Startup Screen . 55
Figure 3 - 2 - Setup Dialogue . 64
Figure 3 - 3 - Hello program in HPDZ . 65
Figure 3 - 4 - HPDZ File Menu . 66
Figure 3 - 5 - ROM and RAM Address dialog . 67
Figure 3 - 6 - Error window . 68
Figure 3 - 7 - HPDZ Edit Menu . 78
Figure 3 - 8 - Options Menu . 81
Figure 3 - 9 - HPDZ Compile Menu. 84
Figure 3 - 10 - HPDZ Make Menu . 86
Figure 3 - 11 - HPDZ Run Menu . 90
Figure 3 - 12 - HPDZ Utility Menu. 91
Figure 3 - 13 - HPDZ Help Menu . 93
Figure 4 - 1 - Library Prefixes and Suffixes . 107
Figure 5 - 1 - Stack Frame after Function Entry . 136
HI-TECH C Z80 compiler 13

14

 1
Introduction

1.1 Typographic conventions

Throughout this manual, we will adopt the convention that any text you need to type will be printed in
bold type. Computer prompts and responses will be printed in constant spaced type which
will be in bold where you are required to type it. Particularly useful points and new terms will be
emphasised using italicised type. With a window based program like HPD, some concepts are difficult
to convey in text. These will be introduced using short tutorials and sample screen displays.

1.2 The HI-TECH C Z80 cross compiler

This manual covers the HI-TECH C Z80 cross compiler for the Z80 family of micro-controllers. In this
manual you will find information on installing, using and customising the compiler.

The compiler runs under MS-DOS, Unix and Xenix. For use under MS-DOS, HI-TECH C requires an
8088, 8086, 80186, 80286, 80386, 80486 or Pentium processor with at least 512K of free conventional
memory, and a hard disk. MS-DOS 3.1 or later is required. We recommend MS-DOS 3.3 or later, or DR-
DOS 6.0 or later. We strongly recommend you have at least 1MB of free XMS memory (from
HIMEM.SYS). A mouse is not required, but is strongly recommended.

1.3 Installation

The installation process depends on the operating system which you are using.

1.3.1 MS-DOS

The HI-TECH C Z80 cross compiler is supplied on two or more 3.5" or 5.25" diskettes. The contents of
the disks are listed in a file called PACKING.LST on disk 1. To install the compiler, you must use the
INSTALL program on disk 1. This is located in the root directory of the disk.

Place disk 1 in either floppy drive, then type a:install or b:install as appropriate. The
INSTALL program will then present a series of messages and ask for various information as it proceeds.
You may need to check your environment variables, (use the SET command), in case you have an
environment variable called TEMP set. If this variable is set, its value should be a directory path. The
full path must exist and designate a directory in which temporary files can be created. If the TEMP
variable specifies a non-existent directory, the INSTALL program may fail.
HI-TECH C Z80 compiler 15

Introduction

 1

1.3.2 INSTALL program

The INSTALL program uses several on-screen windows. There is a message window, in which
messages and prompts are displayed. There is also a one-line status window in which INSTALL shows
what it is currently doing. Other windows will pop up from time to time.

A dialog or alert window will pop up when INSTALL needs you to act, or when any kind of error occurs.
These offer the opportunity to continue, retry (if appropriate) or terminate. If you select TERMINATE,
the installation will be incomplete. A sliding bar indicates the approximate degree of completion of the
installation.

1.3.2.1 Installation steps

When INSTALL prompts for action, you may: press ENTER to continue, ESCAPE to terminate, or use
a mouse if you have one, to select the buttons displayed in the dialog window. To use a mouse, move the
cursor into the desired button, then press and release the left mouse button.

Initially INSTALL will simply advise it is about to install a HI-TECH Software package. Select
CONTINUE or press ENTER. You will then be asked to choose between a full, no questions asked
installation, or a custom installation. A custom installation allows you to choose not to install optional
parts of the compiler. The custom installation will also allow you to specify the directories in which the
compiler is installed.

1.3.2.2 Custom installation

If you select a custom installation, INSTALL asks you a series of questions about directory paths for
installation of the compiler. At each one it displays a default path and asks you to press ENTER to
confirm that path, or enter a new path then press ENTER. You may select TERMINATE if you do not
want to continue. Note that INSTALL will create any directory necessary. However, it will NOT create
intermediate directories, e.g. it will create the directory C:\COMPILE\HITECH if it does not exist, but
it will not create the COMPILE directory in this case. It must already exist.

INSTALL also asks for a temporary file directory. This is a directory in which the compiler will place
temporary files. It should be a RAM disk if you have one (but ensure the RAM disk is reasonably large
- at least several hundred Kilobytes), otherwise it may be a directory on your hard disk or simply left
blank. If it is left blank the compiler will create temporary files in the working directory.

Next INSTALL asks a series of questions about installation of optional parts of the compiler. For each
part you may answer yes (ENTER) or no (F10) or use the mouse to click the appropriate button.

1.3.2.3 Serial number and installation key

After these questions have been answered, or immediately if you selected a full installation, INSTALL
will ask you to enter the serial number and installation key. You will also be asked to enter your name
and your company’s name.
16

Installation

 1
INSTALL will serialise the installed compiler with this information. The serial number and installation
key are found on the reverse of the manual title page. The serial number and key must be entered
correctly or the installation will not proceed.

After this, INSTALL proceeds to copy the files that are contained in the basic compiler and the optional
parts.The compressed files are decompressed automatically. Each file being copied will be displayed in
the status window. If INSTALL discovers it is copying a file that already exists, i.e. it is going to
overwrite a file, it will pop up a dialog window asking if you want to overwrite the file. If you answer
YES the first time this occurs, you will be asked if you want to be prompted about any other overwritten
files. Answering NO will cause install to silently overwrite any other files that already exist. This would
be in order if you were reinstalling or installing an updated version.

During the copying process, INSTALL may bring up a window in the middle of the screen containing
informative text from a file on the distribution disk. This will contain information about the compiler
and other HI-TECH Software packages. While reading this information, you may use the up and down
arrow keys and the Page-up and Page-down keys to scroll the text.

INSTALL will bring up a dialog window whenever you need to change disks. When this occurs, place
the requested disk in the floppy drive and press ENTER. On completion of the installation, it will, if
necessary edit your AUTOEXEC.BAT and CONFIG.SYS files. When it does so, it will bring up two edit
windows containing the new and old versions of the file. You may scroll the windows and compare them
to see what changes have been made. You can edit the new version if you wish. When done, press F1 or
click in the DONE button in the status window. Pressing ESC or clicking in the ABORT window will
prevent INSTALL from updating the file. This step will not occur if your AUTOEXEC.BAT does not
need modification.

After this INSTALL will display some messages, then advise you to press ENTER to read the release
notes for the compiler. This will load the file READ.ME in the screen window and allow you to read it.
The file is also automatically copied onto your hard disk. Pressing ENTER again will exit to DOS.

At this stage you may need to reboot to allow the changes to AUTOEXEC.BAT to take effect. INSTALL
will tell you to do this if it is necessary. The installation is now complete.

1.3.3 Accessing the compiler

The installation process will include in your PATH environment variable the directory containing the
compiler executable programs. However, it is possible that some other programs already installed on
your system may have the same name as one of the compiler programs. To overcome this you may need
to re-organise your PATH environment variable.

The compiler drivers are ZC.EXE (command line version) and HPDZ.EXE (integrated version). These
are basically the only commands you need to access the compiler, but you may also want to run other
utilities directly.
HI-TECH C Z80 compiler 17

Introduction

 1

1.4 Unix Installation

Unix versions of the Z80 C Cross compiler are usually supplied on TAR format diskettes or tapes. To
install the compiler, you will first need to create a directory. By default the directory the compiler driver
will expect is /usr/hitech but this can be overridden by setting the HTC_Z80 environment variable just
as for MS-DOS.

To extract the compiler, first create the direcory into which you will install the compiler:

mkdir /usr/hitech

Replace the directory name with whatever you have chosen. Then change into the directory:

cd /usr/hitech

Then extract the files from the diskette or tape. Replace the device name with whatever physical device
you will use to read the tape or disk:

tar xf /dev/install

The compiler will now be installed. You should add to your PATH environment variable the bin
directory, for example /usr/hitech/bin. If the directory is anything other than /usr/hitech then you will
need to set the environment variable in your .cshrc or .profile file. For example, in .cshrc (for the c-shell)
add the line:

setenv HTC_Z80 /home/hitech

A Bourne shell user will require the following lines in .profile:

HTC_Z80=/home/hitech
export HTC_Z80

Again replace the directory name with whatever you have chosen.

1.4.1 Accessing the compiler under Unix

The Unix compiler has only a command line driver - HPDZ is not provided. The command line options
are the same as for DOS - just use the ZC command as described in subsequent chapters.

1.5 Getting started

For new users of the HI-TECH C compiler, the following section provides a step-by-step guide to getting
your first program running in a target system. You’ll need a working Z80 or Z80 derivative system, with
RAM and ROM, and some means of either downloading code or programming an EPROM. And, of
course, you’ll need to have installed the compiler as described in the previous chapter.
18

A Sample Program

 1s and

 “quick
f which
 your
ossible
res the

to the
most
Ds is
t have
toring
that the
You will find a complete guide to using HPDZ and ZC in the chapters “Using HPDZ” and “Feature
Runtime Environment”.

One thing should be made clear; with embedded programming there really is no such thing as a
start”. There are several variables, e.g. the hardware, memory, I/O devices and the software, all o
must be exactly right or the program will simply not work. There are no error messages when
embedded program crashes - it is a black box. Be prepared to check everything carefully, and if p
start with known working hardware. Debugging hardware and software at the same time squa
degree of difficulty.

1.6 A Sample Program

/*
 * Test program for Z180.
 * Flashes LEDs attached to I/O port
 * at 0x80
 */

/*
 * Define the LED port
 */
static port unsigned char LED @ 0x80;
main()
{
 register int i, j;
 i = 0; /* 0 turns leds on */
 for(;;) { /* loop endlessly */
 LED = i;
 for(j = 0 ; ++j ;
 continue; /* delay */
 i = ~i;
 }
}

The small sample program shown is written for the Z80180 processor, with 8 LEDs attached
output port at 0x80. It loops forever flashing the LEDs. If your hardware is different, as it al
certainly is, you should write a similar program tailored for your particular hardware. Flashing LE
however a good place to start, as it provides a visual indication of program function. If you don'
LEDs attached, then you could monitor an output port line with a CRO or logic probe. Even moni
address lines with a CRO or logic analyser can be used. The idea is to be able to determine
HI-TECH C Z80 compiler 19

Introduction

 1

program is running correctly using a minimum of resources, so as to remove as many variables as
possible from the problem

Once the first program is running, it is easier to progress from that point than to try and run a complex
program from the beginning. To get this program running, you will need to compile it, either using
HPDZ, the integrated development environment, or ZC, the command line compiler driver.

1.6.1 Memory Map

Before compiling your sample program, you will need to know what memory map you are using. If the
test hardware you will execute this code in is a standard Z80 or equivalent, i.e. it has a 64K memory
space with no bank switching, then you should simply have a block of ROM at zero, and a block of RAM
at some other address in the first 64K. You will need to know what address the RAM starts at, and how
big it is.

If you are using a Z180 or 64180, it is likely that your memory will be located at other addresses in the
512K or 1M memory space of these processors. The ROM will probably still start at zero, but it is
possible the RAM starts at an address bigger than 64K. You will need to know this address, as well as
choosing an address within the first 64K to map the RAM to, e.g. you might have RAM at 10000 hex,
but want to map it to 8000, extending to FFFF. This would leave 0 to 7FFF for ROM.

1.7 Using HPDZ

To enter this program, simply follow these steps:

❒ Start HPDZ by typing HPDZ, then press Enter. If you have installed HPDZ properly, it will
be in your search path. You should have on screen a menu bar, a large edit window, and a smaller
message window.

❒ Start typing the program text in the edit window. The editor command keys allow either the
standard PC keys (arrow keys etc.) or WordStar-compatible keystrokes.

❒ After typing the complete program (with any modifications necessary for your hardware) press
ALT-S. A dialog box will appear asking you to enter a name to save the file. Type the name
SAMPLE.C and press Return. The file will be saved to disk.

❒ Press ALT-P to open the Options menu. Use either the mouse or arrow keys to select the item
Memory model and chip type. This will open a dialog box enabling you to select either Z80
or Z180 code, and small or banked model. Select the small model, and either Z80 or Z180
depending on what processor you are using. Press Return to exit the dialog box.

❒ Press ALT-P again and select the ROM output file item. This will open a dialog box allowing
you to select an output format for your executable file. Choose a file format compatible with
your EPROM programmer. Intel HEX or binary are the most commonly used formats. Press
Return to exit the dialog box.
20

Using ZC

 1
❒ Press F3 to compile the program. If you haven’t saved the edit file, you will be prompted to do
so now. Save it as SAMPLE.C. A dialog box will open asking for memory addresses. Enter in
the ROM address field the address at which you want the code to start (this will almost always
be zero) and enter in the RAM address field the start of your RAM. If you are using a Z180 you
will also have to enter a RAM physical address. This should be the linear address in the Z180’s
address space at which the RAM is addressed. In this case the first RAM address can be set at
any value below 64K, but should be chosen to avoid low memory where ROM will be located.

Press Enter to exit the dialog box. HPDZ will compile the program. Any errors found will stop
the compilation, and the errors will be listed in a window that appears at the bottom of the
screen. The cursor in the edit window will be positioned on the error line. Correct the error,
then press F3 again. You will not have to re-enter the memory addresses.

On completion of compilation, an output file called SAMPLE.HEX (or SAMPLE.BIN for
binary) will be left in the current directory.

❒ Exit HPD by pressing ALT-Q.

1.8 Using ZC

To use ZC to compile your sample program, you will first need to create a file containing the program.
You can use whatever text editor you are familiar with, as long as it can create a plain ASCII file. The
DOS EDIT command is satisfactory. Call the file SAMPLE.C. To run ZC, type:

ZC SAMPLE.C

If you are compiling for a Z180, then you should add a -180 option, e.g.

ZC -180 SAMPLE.C

This both generates code for the Z180 instruction set, and prompts you for the physical RAM address as
well as the other addresses needed.

If you have correctly entered the sample program, no error messages should result. If you do get error
messages, edit the program to correct the errors, and recompile with ZC as before. ZC will then prompt
for some memory addresses, as shown in the following sample:

C:\>zc -180 sample.c
HI-TECH C COMPILER (Z80/Z180/64180) V7.60
Copyright (C) 1984-1996 HI-TECH Software
Serial no: CZ80-12345; Licensed to:
Alfred

Invalid or no memory addresses specified:
HI-TECH C Z80 compiler 21

Introduction

 1

Use a -Arom,ram,ramsize,ramphys,nvram option, e.g.
 -A8000,6000,2000,10000,4000
specifies ROM at 8000(hex) and 8K bytes of RAM at physical 10000(hex)
mapped into common area 1 at 6000(hex)
ROM (vectors) address: 0
RAM address: 8000
RAM size(default 800 hex):
Physical address of RAM: 10000
Non-volatile RAM address (if used):
Next time use the option -A0,8000,800,10000

Linking:
Objtohex:

Memory Usage Map:
User: 0069H - 0102H 009AH (154) bytes
CODE: 0000H - 0068H 0069H (105) bytes
CODE: 0103H - 015AH 0058H (88) bytes
RAM: 8000H - 8023H 0024H (36) bytes

Points to note:

❒ The ROM address has been specified as zero. It is most unlikely that you will specify anything
else here, unless you are going to be running the code in RAM on a board with a ROM monitor.

❒ The RAM address has been given as 8000. This is the hex address that RAM is mapped at by
hardware address decoding, or that you want it to be mapped at by the MMU on a Z180 system.

❒ The RAM size has been allowed to stay at the default 800 (hex). This is adequate for this sample
program, but in general you should specify here the actual size of the RAM that is available to
the compiled program.

❒ The -180 option was used, so the driver has prompted for a physical RAM address. This is
required for the Z180 to allow the code to set up the MMU at run time. In this example the
RAM physical address has been specified as 10000. You should enter here the actual RAM
address. If you are using a Z180 where the RAM and ROM are both mapped into the first 64K
bytes, then it is usually best to give the actual address of the RAM for the RAM address and
the physical RAM address values.

❒ No non-volatile RAM (NVRAM) has been specified. If you are using NVRAM, enter the
physical address of the NVRAM here. Variables defined using the persistent keyword are stored
in NVRAM.
22

Running your program

 1
❒ ZC has printed a short summary of memory usage. Check that the addresses in this correspond
to the memory addresses you specified.

1.8.1 Output File Format Selection

The compiler supports various output file formats. The two most commonly used for input into and
EPROM programmer are Intel HEX and binary. The default is Intel HEX, but can be changed via the
ROM Output File ... menu selection in the Options menu of HPDZ, or with one of the following
options to ZC:

-MOTOROLA Produce Motorola S1/S9 HEX file

-BIN Produce a binary output file

-UBROF Produce an IAR Ubrof file

-AAHEX Produce HEX records with symbols for American Automation emulators

-TEKHEX Produce Tektronix HEX file output

1.9 Running your program

Once you have compiled the program, you will have a file called SAMPLE.HEX in the current directory.
How you get this into your hardware will vary depending on just what you have to work with, but
generally speaking you will need either an EPROM programmer or an in-circuit-emulator to allow you
to get the program into the memory of your target system The exact procedures for doing so are beyond
the scope of this manual.
HI-TECH C Z80 compiler 23

Introduction

 1
24

 2ilers.
ey are
re are
 are

pilers
mpiler

ns are

nd-line
d what
ire

ction

rocess
options
in an
nd
S batch

t chip
with the
Tutorials

The following are tutorials to aid in the understanding and usage of HI-TECH’s C cross comp
These tutorials should be read in conjunction with the appropriate sections in the manual as th
aimed at giving a general overview of certain aspects of the compiler. Some of the tutorials he
generic to all HI-TECH C compilers and may include information not specific for the compiler you
using.

2.1 Overview of the compilation process

This tutorial gives an overview of the compilation process that takes place with HI-TECH C com
in terms of how the input source files are processed. The origin of files that are produced by the co
is discussed as well as their content and function.

2.1.1 Compilation

When a program is compiled, it is done so by many separate applications whose operatio
controlled by either the command-line driver (CLD) or HPD driver1 (HPD). In either case, HPD or the
CLD take the options specified by the programmer (menu options in the case of HPD, or comma
arguments for the CLD) to determine which of the internal applications need to be executed an
options should be sent to each. When the term compiler is used, this is intended to donate the ent
collection of applications and driver that are involved in the process. In the same way, compilation refers
to the complete transformation from input to output by the compiler. Each application and its fun
is discussed further on in this document.

The compiler drivers use several files to store options and information used in the compilation p
and these file types are shown in Table 2 - 1 on page 26. The HPD driver stores the compiler
into a project file which has a ".prj" extension. HPD itself stores its own configurational settings
INI file, e.g. HPD51.ini in the bin directory. This file stores information such as colour values a
mouse settings. Users who wish to use the CLD can store the command line arguments in a DO
file.

Some compilers come with chip info files which describe the memory arrangements of differen
types. If necessary this file can be edited to create new chip types which can then be selected
appropriate command-line option of from the select processor... menu. This file will also have a ".ini"
extension and is usually in the lib directory.

1. The command line driver and HPD driver have processor-specific names, such as picc, c51, or HPDXA, HPDPIC
etc.
HI-TECH C Z80 compiler 25

Tutorials

 2
The compilation process is discussed in the following sections both in terms of what takes place at each

stage and the files that are involved. Reference should be made to Figure 2 - 1 on page 27 which shows
the block diagram of the internal stages of the HI-TECH compiler, and the tables of file types throughout
this tutorial which list the filename extension2 used by different file formats and the information which
the file contains. Note that some older HI-TECH compilers do not include all the applications discussed
below.

The internal applications generate output files and pass these to the next application as indicated in the
figure. The arrows from one application (drawn as ellipses) to another is done via temporary files that
have non-descriptive names such as $$003361.001. These files are temporarily stored in a directory
pointed to by the DOS environment variable TEMP. Such a variable is created by a set DOS command.
These files are automatically deleted by the driver after compilation has been completed.

2.1.2 The compiler input

The user supplies several things to the compiler to make a program: the input files and the compiler
options, whether using the CLD or HPD. The compiler accepts many different input file types. These
are discussed below.

It is possible, and indeed in a large number of projects, that the only files supplied by the user are C
source files and possibly accompanying header files. It is assumed that anyone using our compiler is
familiar with the syntax of the C language. If not, there is a seemingly endless selection of texts which
cover this topic. C source files used by the HI-TECH compiler must use the extension ".c" as this
extension is used by the driver to determine the file’s type. C source files can be listed in any order on
the command line if using the CLD, or entered into the source file list... dialogue box if using HPD.

A header file is usually a file which contains information related to the program, but which will not
directly produce executable code when compiled. Typically they include declarations (as opposed to
definitions) for functions and data types. These files are included into C source code by a pre-processor

Table 2 - 1 Configuration files

extension name contents

.prj project file compiler options stored by HPD driver

.ini HPD initialisation file HPD environment settings

.bat batch file command line driver options stored as DOS batch file

.ini chip info file information regarding chip families

2. The extensions listed in these tables are in lower case. DOS compilers do not distinguish between upper- and lower-
case file names and extensions, but in the interest of writing portable programs you should use lower-case exten-
sions in file names and in references to these files in your code as UNIX compilers do handle case correctly.
26

Overview of the compilation process

 2
directive and are often called include files. Since header files are referenced by a command that includes
the file’s name and extension (and possibly a path), there are no restrictions as to what this name can be
although convention dictates a ".h" extension.

Although executable C code may be included into a source file, a file using the extension ".h" is assumed
to have non-executable content. Any C source files that are to be included into other source files should
still retain a ".c" extension. In any case, the practise of including one source file into another is best

Figure 2 - 1 Compilation overview
HI-TECH C Z80 compiler 27

Tutorials

 2

embler

les are
iles can

d from
ave no

ry files
must

t

avoided as it makes structuring the code difficult, and it defeats many of the advantages of having a
compiler capable of handling multiple-source files in the first place. Header files can also be included
into assembler files. Again, it is recommended that the files should only contain assembler declarations.

HI-TECH compilers comes with many header files which are stored in a separate directory of the
distribution. Typically user-written header files are placed in the directory that contains the sources for
the program. Alternatively they can be placed into a directory which can be searched by using a -I (CPP
include paths...) option.

An assembler file contains assembler mnemonics which are specific to the processor for which the
program is being compiled. Assembler files may be derived from C source files that have been
previously compiled to assembler, or may be hand-written and highly-prized works of art that the
programmer has developed. In either case, these files must conform to the format expected of the HI-
TECH assembler that is part of the compiler. This processor-dependence makes assembly files quite un-
portable and they should be avoided if C source can be made to perform the task at hand. Assembler files
must have a ".as" extension as this is used by the compiler driver to determine the file’s type. Ass
files can be listed in any order on the command line if using the CLD, or entered into the source file
list... dialogue box if using HPD, along with the C source files.

The compiler drivers can also be passed pre-compiled HI-TECH object files as input. These fi
discussed below in Section 2.1.2.1 on page 29. These files must have a ".obj" extension. Object f
be listed in any order on the command line if using the CLD, or entered into the object file list... dialogue
box if using HPD. You should not enter the names of object files here that have been compile
source files already in the project, only include object files that have been pre-compiled and h
corresponding source in the project, such as the run-time file should be listed.

Commonly used program routines can be compiled into a file called a library file. These files are more
convenient to handle and can be accessed quickly by the compiler. The compiler can accept libra
directly like other source files. A ".lib" extension indicates the type of the file and so library files

Table 2 - 2 Input file types

extension name content

.c C source file C source conforming to the ANSI standard possibly with
extensions allowed by HI-TECH C

.h header file C/assembler declarations

.as assembler file assembler source conforming to the HI-TECH assembler forma

.obj (relocatable)
object file

pre-compiled C or assembler source as HI-TECH relocatable
object file

.lib library file pre-compiled C or assembler source in HI-TECH library format
28

Overview of the compilation process

 2
be named in this way. Library files can be listed in any order on the command line if using the CLD, or
entered into the library file list... dialogue box if using HPD.

The HI-TECH library functions come pre-compiled in a library format and are stored in a special
directory in your distribution.

2.1.2.1 Steps before linking

Of all the different types of files that can be accepted by the compiler, it is the C source files that require
the most processing. The steps involved in compiling the C source files are examined first.

For each C source file, a C listing file is produced by an application called clist. The listing files
contain the C source lines proceeded by a line number before any processing has occurred. The C listing
for a small test program called main.c is shown in Table 2 - 3 on page 29.

The input C source files are also passed to the preprocessor, cpp. This application has the job of
preparing the C source for subsequent interpretation. The tasks performed by cpp include removing
comments and multiple spaces (such as tabs used in indentation) from the source, and executing any pre-
processor directives in the source. Directives may, for example, replace macros with their replacement
text or remove source if certain conditions are not true. The pre-processor also copies header files,
whether user- or compiler-supplied, into the source. Table 2 - 4 on page 30 shows pre-processor output
for the test program.

The output of the pre-processor is C source, but it may contain code which has been included by the pre-
processor from other files and only contain code if the pre-processor evaluates specific conditions to be
true. The pre-processor output is often referred to as a module or translational unit. The term "module"
is sometimes used to describe the actual source file from which the "true" module is created. This is not
strictly correct, but the meaning is clear enough.

The code generation that follows operate on the cpp output module, not the C source and so special steps
must be taken to be able to reconcile errors and their position in the original C source files. The # 1
main.c line in the pre-processor output is included by the pre-processor to indicate the file name and

Table 2 - 3 clist output

C source C listing

#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

1: #define VAL 2
2:
3: int a, b = 1;
4:
5: void
6: main(void)
7: {
8: /* set starting value */
9: a = b + 2;
10: }
HI-TECH C Z80 compiler 29

Tutorials

 2
line number in the C source file that corresponds to this position. Notice in this example that the
comment and macro definition have been removed, but blank lines take their place so that line
numbering information is kept intact.

Like all compiler applications, the pre-processor is controlled by the compiler driver (either the CLD or

HPD). The type of information that the driver supplies the pre-processor includes directories to search
for header files that are included into the source file, and the size of basic C objects (such as int,
double, char *, etc.) using the -S, -SP options so that the pre-processor can evaluate pre-processor
directives which contain a sizeof(type) expression. The output of the pre-processor is not normally
seen unless the user uses the -pre option in which case the compiler output can then be re-directed to
file.

The output of cpp is passed to p1, the parser. The parser starts the first of the hard work involved with

turning the description of a program written in the C language into the actual executable itself consisting

Table 2 - 4 Pre-processor output

C source Pre-processed output

#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

1 "main.c"

int a, b = 1;

void
main(void)
{

a = b + 2;
}

Table 2 - 5 Intermediate and Support files

extension name contents

.pre pre-processed file C source or assembler after the pre-processing stage

.lst C listing file C source with line numbers

.lst assembler listing C source with corresponding assembler instructions

.map map file symbol and psect relocation information generated by the linker

.err error file compiler warnings and errors resulting from compilation

.rlf relocation listing file information necessary to update list file with absolute addresses

.sdb symbolic debug file object names and types for module

.sym symbol file absolute address of program symbols
30

Overview of the compilation process

 2
of assembler instructions. The parser scans the C source code to ensure that it is valid and then replaces
C expressions with a modified form of these. (The description of code generation that follows need not
be followed to understand how to use the HI-TECH compiler, but has been included for curious readers.)

For example the expression a = b + 2 is re-arranged to a prefix notation like = a + b 2. This notation
can easily be interpreted as a tree with = at the apex, a and + being branches below this, and b and 2
being sub-branches of the addition. The output of the parser is shown in Table 2 - 6 on page 31 for our
small C program. The assignment statement in the C source has been highlighted as well as the output
the parser generates for this statement. Notice that already, the global symbols in the parser output have
had an underscore character pre-pended to their name. From now on, reference will be made to them
using these symbols. The other symbols in this highlighted line relate to the constant. The ANSI standard
states that the constant 2 in the source should be interpreted as a signed int. The parser ensures this
is the case by casting the constant value. The -> symbol represents the cast and the ‘i represents the
type. Line numbering, variable declarations and the start and end of a function definition can be seen in
this output.

It is the parser that is responsible for finding a large portion of the errors in the source code. These errors

will relate to the syntax of the source code. The parser also reports warnings if the code is unusual.

The parser passes its output directly to the next stage in the compilation process. There are no driver
options to force the parser to generate parsed-source output files as these files contain no useful
information for the programmer.

Table 2 - 6 Parser output

C source Parsed output

#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

Version 3.2 HI-TECH Softwa...
"3 main.c
[v _a ‘i 1 e]
[v _b ‘i 1 e]
[i _b
-> 1 ‘i
]
"7
[v _main ‘(v 1 e]
{
 [e :U _main]
 [f]
 "9
[; ;main.c: 9: b = a + 2;
 [e = _a + _b -> 2 ‘i]
 "10
[; ;main.c: 10: }
 [e :UE 1]
}

HI-TECH C Z80 compiler 31

Tutorials

 2

Can’t
and that
are no

bout a
e 32 for
ding a
 is not

nsion.
Now the tricky part of the compilation: code generation. The code generator converts the parser output
into assembler mnemonics. This is the first step of the compilation process which is processor-specific.
Whereas all HI-TECH pre-processors and parsers have the same name and are in fact the same
application, the code generators will have a specific, processor-based name, for example cgpic, or
cg51.

The code generator uses a set of rules, or productions, to produce the assembler output. To understand

how a production works, consider the following analogy of a production used to generate the code for
the addition expression in our test program. "If you can get one operand into a register" and "one operand
is a int constant" then here is the code that will perform a 2-byte addition of them. Here, each quoted
string would represent a sub-production which would have to be matched. The first string would try to
get the contents of _a into a register by matching further sub-productions. If it cannot, this production
cannot be used and another will be tried. If all the sub-productions can be met, then the code that they
produce can be put together in the order specified by the production tree. Not all productions actually
produce code, but are necessary for the matching process.

If no matching production/subproductions can be found, the code generator will produce a "
generate code for this expression" error. This means that the original C source code was legal
the code generator did try to produce assembler code for it, but that in this context, there
productions which can match the expression.

Typically there may be around 800 productions to implement a full code generator. There were a
dozen matching productions to generate code for the statement highlighted in Table 2 - 7 on pag
the XA code generator. It checked about 70 productions which were possible matches before fin
solution. The exact code generation process is too complex to describe in this document and
required to be able to use the compiler efficiently.

The user can stop the compilation process after code generation by issuing a -s (compile to .as) option
to the driver. In this case, the code generator will leave behind assembler files with a ".as" exte

Table 2 - 7 Code generator output

C source assembler (XA) code
#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

 psect text
_main:
;main.c: 9: a = b + 2;
 global _b
 mov r0,#_b
 movc.w r1,[ro+]
 adds.w r1,#02h
 mov.w _a,r1
32

Overview of the compilation process

 2
Table 2 - 7 on page 32 shows output generated by the XA code generator. Only the assembler code for
the opening brace of _main and the highlighted source line is shown. This output will be different for
other compilers and compiler options.

The code generator may also produce debugging information in the form of an ".sdb" file. This operation
is enabled by using the -g (source level debug info) option. One debug file is produced for each module
that is being compiled. These ASCII files contain information regarding the symbols defined in each
module and can be used by debugging programs. Table 2 - 5 on page 30 shows the debug files that can
be produced by the compiler at different stages of the compilation. Several of the output formats also
contain debugging information in addition to the code and data.

The code generator optionally performs one other task: optimization. HI-TECH compilers come with
several different optimizer stages. The code generator is responsible for global optimization which can
be enabled using a -Zg (global optimization) option. This optimization is performed on the parsed
source. Amongst other things, this optimization stage allocates variables to registers whenever possible
and looks for constants that are used consecutively in source code to avoid reloading these values
unnecessarily.

Assembly files are the first files in the compilation process that make reference to psects, or program
sections. The code generator will generate the psect directives in which code and data will be positioned.

The output of the code generator is then passed to the assembler which converts the ASCII
representation of the processor instructions - the ASCII mnemonics - to binary machine code. The
assembler is specific for each compiler as has a processor-dependent name such as aspic or asxa.
Assembler code also contains assembler directives which will be executed by the assembler. Some of
these directives are to define ROM-based constants, others define psects and others declare global
symbols.

The assembler is optionally preceded by an optimization of the generated assembler. This is the peephole
optimization. With some HI-TECH compilers the peephole optimizer is contained in the assembler
itself, e.g. the PIC assembler, however others have a separate optimization application which is run
before the assembler is executed, e.g. opt51. Peephole optimization is carried out separately over the
assembler code derived from each single function.

In addition to the peephole optimizer, the assembler itself may include a separate assembler optimizer
step which attempts to replace long branches with short branches where possible. The -O option enables
both assembler optimizers, even if they are performed by separate applications, however HPD includes
menu items for both optimizer stages (Peephole optimization and Assembler optimization). If the
peephole optimizer is part of the assembler, the assembler optimization item in HPD has no effect.

The output of the assembler is an object file. An object file is a formatted binary file which contains
machine code, data and other information relating to the module from which it has been generated.
Object files come in two basic types: relocatable and absolute object files. Although both contain
HI-TECH C Z80 compiler 33

Tutorials

 2
machine code in binary form, relocatable object files have not had their addresses resolved to be absolute
values. The binary machine code is stored as a block for each psect. Any addresses in this area are
temporarily stored as 00h. Separate relocation information in the object file indicates where these
unresolved addresses lie in the psect and what they represent. Object files also contain information
regarding any psects that are defined within so that the linker may position these correctly.

Object files produced by the assembler follow a format which is standard for all HI-TECH compilers,
but obviously their contents are machine specific. Table 2 - 8 on page 34 shows several sections of the
HI-TECH format relocatable object file that has been converted to ASCII for presentation using the
DUMP executable which comes with the compiler. The highlighted source line is represented by the
highlighted machine code in the object file. This code is positioned in a psect called text. The
underlined bytes in the object file are addresses that as yet are unknown and have been replaced with
zeros. The lines after the text psect in the object file show the information used to resolve the addresses
needed by the linker. The two bytes starting at offset 2 and the two single bytes at offset 9 and 10 are
represented here and as can be seen, their address will be contained at an address derived from the
position of the data and bss psects, respectively.

If a -asmlist (generate assemble listing) option was specified, the assembler will generate an
assembler listing file which contains both the original C source lines and the assembler code that was
generated for each line. The assembler listing output is shown in Table 2 - 9 on page 35. Unresolved
addresses are listed as being zero with unresolved-address markers "’ " and "* " used to indicate that the
values are not absolute. Note that code is placed starting from address zero in the new text psect. The
entire psect will be relocated by the linker.

Some HI-TECH assemblers also generate a relocatable listing file (extension: ".rlf").3 This contains
address information which can be read by the linker and used to update the assembler listing file, if such

Table 2 - 8 Assembler output

C source Relocatable object file
#define VAL 2

int a, b;

void
main(void)
{
 /* set start...
 a = b + VAL;
}

11 TEXT 22
 text 0 13
 99 08 00 00 88 10 A9 12 8E 00 00 D6 80
12 RELOC 63
 2 RPSECT data 2
 9 COMPLEX 0
 Key: direct
 0x7>=(high bss)
 9 COMPLEX 1
 ((high bss)&0x7)+0x8
 10 COMPLEX 1
 low bss

3. The generation of this file is not shown in Figure 2 - 1 on page 27 in the interests of clarity.
34

Overview of the compilation process

 2
a file was created. After linking, the assembler listing file will have addresses and unresolved address
markers removed and replaced with absolute addresses.

The above series of steps: pre-processing, parsing, code generation and assembly, are carried out for
each C source file passed to the driver in turn. Errors in the code are reported as they are detected. If a
file cannot be compiler due to an error, the driver halts compilation of that module after the application
that generated the error completes and continues with the next file which were passed to it, starting again
with the clist application.

For any assembler files passed to the driver, these do not require as much processing as C source files,
but they must be assembled. The compiler driver will pass any ".as" files straight to the assembler. If the
user specifies the -p (pre-process assembler files) the assembler files are first run through the C pre-
processor allowing the using of all pre-processor directives within assembly code. The output of the pre-
processor is then passed to the assembler.

Object and library files passed to the compiler are already compiled and are not processed at all by the
first stages of the compiler. They are not used until the link stage which is explained below.

If you are using HPD, dependency information can be saved regarding each source and header file by
clicking the save dependency information switch. When enabled, the HPD driver determines only
which files in the project need be re-compiled from the modification dates of the input source files. If
the source file has not been changed, the existing object file is used.

2.1.2.2 The link stage

The format of object files are again processor-independent so the linker and other applications discussed
below are common across the whole range of HI-TECH compilers. The linker’s name is hlink.4

The tasks of the linker are many. The linker is responsible for combining all the object and library files
into a single file. The files operated on by the linker include all the object files compiled from the input

Table 2 - 9 Assembler listing

C source Assembler listing
#define VAL 2

int a, b;

void
main(void)
{
 /* set start...
 a = b + VAL;
}

10 0000’ psect text
11 0000’ _main:
12 ;main.c: 9: a = b + 2;
13 0000’ 99 08 0000’ mov.w r0,#_b
14 0004’ 88 10 movc.w r1,[r0+]
15 0006’ A9 12 adds.w r1,#2
16 0008’ 8E 00* 00* mov.w _a,r1
17 ;main.c: 10: }
18 000B’ D6 80 ret

4. Early HI-TECH linkers were called link.
HI-TECH C Z80 compiler 35

Tutorials

 2
C source files and assembler files, plus any object files or library files passed to the compiler driver, plus
any run-time object files and library files that the driver supplies. The linker also performs grouping and
relocation of the psects contained in all of the files passed to it, using a relatively complex set of linker
options. The linker also resolves symbol names to be absolute addresses after relocation has made it
possible to determine where objects are to be stored in ROM or RAM. The linker then adjusts references
to these symbols - a process known as address fixup. If the symbol address turns out to be too large to
fit into the space in the instruction generated by the code generator, a "fixup overflow" error occurs.

The linker can also generate a map file which has detailed information regarding the position of the
psects and the addresses assigned to symbols. The linker may also produce a symbol file. These files
have a ".sym" extension and are generated when the -g (source level debug info) option is used. This
symbol file is ASCII-based and contains information for the entire program. Addresses are absolute as
this file is generated after the link stage.

The output of linkers for compilers which compile for an operating-system based computer are true
executable object files that can be loaded and run. The compilation process, however, is not quite
finished for a cross compiler. Although the object file produced by hlink contains all the information
necessary to run the program, the program has to be somehow transferred from the host computer to the
embedded hardware.

There are a number of standard formats that have been created for such a task. Emulators and chip
programmers often can accept a number of these formats. The Motorola HEX (S record) or Intel HEX
formats are common formats. These are ASCII formats allowing easy viewing by any text editor. They
include checksum information which can be used by the program which downloads the file to ensure that
it was transmitted without error. These formats include address information which allows those areas
which do not contain data to be omitted from the file. This can make these files significantly smaller
than, for example, a binary file.

The objtohex application is responsible for producing the output file requested by the user. It takes the
absolute object file produced by the linker and produces an output under the direction of the compiler
driver. The objtohex application can produce a variety of different formats to satisfy most
development systems. The output types available with most HI-TECH compilers are shown in Table 2
- 10 on page 37.

In some circumstances, more than one output file is required. In this case an application called
cromwell, the reformatter, is executed to produce further output files. For example it is commonly used
with the PIC compiler to read in the HEX file and the SYM file and produce a COD file.
36

Psects and the linker

 2
2.2 Psects and the linker

This tutorial explains how the compiler breaks up the code and data objects in a C program into different
parts and then how the linker is instructed to position these into the ROM and RAM on the target.

2.2.1 Psects

As the code generator progresses it generates an assembler file for each C source file that is compiled.
The contents of these assembly files include different sections: some containing assembler instructions
that represent the C source; others contain assembler directives that reserve space for variables in RAM;
others containing ROM-based constants that have been defined in the C source; and others which hold
data for special objects such as non-volatile variables, interrupt vectors and configuration words used by
the processor. Since there can be more than one input source file there will be similar sections of
assembler spread over multiple assembler files which need to be grouped together after all the code
generation is complete.

These different sections of assembler need to be grouped in special ways: It makes sense to have all the
initialised data values together in contiguous blocks so they can be copied to RAM in one block move
rather than having them scattered in-between sections of code; the same applies to uninitialised global
objects which have to be allocated a space which is then cleared before the program starts; some code

Table 2 - 10 Output formats

extension name content

.hex Motorola hex code in ASCII, Motorola S19 record format

.hex Intel hex code in ASCII, Intel format

.hex Tektronix hex code in ASCII Tek format

.hex American Auto-
mation hex

code and symbol information in binary, American Automa-
tion format

.bin binary file code in binary format

.cod Bytecraft COD
file

code and symbol information in binary Bytecraft format

.cof COFF file code and symbol information in binary common object file
format

.ubr UBROF file code and symbol information in universal binary relocatable
object format

.omf OMF-51 file code and symbol information in Intel Object Module For-
mat for 8051

.omf enhanced OMF-
51 file

code and symbol information in Keil Object Module Format
for 8051
HI-TECH C Z80 compiler 37

Tutorials

 2

essor’s
absolute
rmation
er later

 place
s of a
tions
rogram

ssembly

 can
l psects
e name

 will be
should

rouped
 if they

e same
ed with
or objects have to be positioned in certain areas of memory to conform to requirements in the proc
addressing capability; and at times the user needs to be able to position code or data at specific
addresses to meet special software requirements. The code generator must therefore include info
which indicates how the different assembler sections should be handled and positioned by the link
in the compilation process.

The method used by the HI-TECH compiler to group and position different parts of a program is to
all assembler instructions and directives into individual, relocatable sections. These section
program are known as psects - short for program sections. The linker is then passed a series of op
which indicate the memory that is available on the target system and how all the psects in the p
should be positioned in this memory space.

2.2.1.1 The psect directive

The psect assembler directives (generated by the code generator or manually included in other a
files) define a new psect. The general form of this directive is shown below.

psect name,option,option...

It consists of the token psect followed by the name by which this psect shall be referred. The name
be any valid assembler identifier and does not have to be unique. That is, you may have severa
with the same name, even in the same file. As will be discussed presently, psects with the sam
are usually grouped together by the linker.

The directive options are described in the assembler section of the manual, but several of these
discussed in this tutorial. The options are instructions to the linker which describe how the psect
be grouped and relocated in the final absolute object file.

Psects which all have the same name imply that their content is similar and that they should be g
and linked together in the same way. This allows you to place objects together in memory even
are defined in different files.

After a psect has been defined, the options may be omitted in subsequent psect directives in th
module that use the same name. The following example shows two psects being defined and fill
code and data.

psect text,global
begin:
 mov r0,#10
 mov r2,r4
 add r2,#8
psect data
input:
 ds 8
38

Psects and the linker

 2
psect text
next:
 mov r4,r2
 rrc r4

In this example, the psect text is defined including an option to say that this is a global psect. Three
assembler instructions are placed into this psect. Another psect is created: data. This psect reserves 8
bytes of storage space for data in RAM. The last psect directive will continue adding to the first psect.
The options were omitted from the psect directive in this example as there has already been a psect
directive in this file that defines the options for a psect of this name. The above example will generate
two psects. Other assembler files in the program may also create psects which have the same name as
those here. These will be grouped with the above by the linker in accordance with the psect directive
flags.

2.2.1.2 Psect types

Psects come in three broad types: those that will reside permanently in ROM5; those that will be
allocated space in RAM after the program starts; and those that will reside in ROM, but which will be
copied into another reserved space in RAM after the program starts. A combination of code - known as
the run-time (or startup) code - and psect and linker options allow all this to happen.

Typically, psects placed into ROM contain instructions and constant data that cannot be modified. Those
psects allocated space in RAM only are for global data objects that do not have to assume any non-zero
value when the program starts, i.e. they are uninitialised. Those psects that have both a ROM image and
space reserved in RAM are for modifiable, global data objects which are initialised, that is they contain
some specific value when the program begins, but that value can be changed by the program during its
execution.

The following C source shows two objects being defined. The object input will be placed into a data
psect; the value 22 will reside in ROM and be copied to the RAM space allocated for input by the run-
time code. The object output will not contribute directly to the ROM image. A an area of memory will
be reserved for it in RAM and this area will be cleared by the run-time code (output will be assigned
the value 0).

int input = 22; // an initialised object
int output; // an uninitialised object

Snippets from the assembler listing file show how the 8051XA compiler handles these two objects.
Other compilers may produce differently structured code. The psect directive flags are discussed

5. The term "ROM" will be used to refer to any non-volatile memory.
HI-TECH C Z80 compiler 39

Tutorials

 2
presently, but note that for the initialised object, input, the code generator used a dw (define word)
directive which placed the two bytes of the int value (16 and 00) into the output which is destined for
the ROM. Two bytes of storage were reserved using the ds assembler directive for the uninitialised
object, output, and no values appear in the output.

 1 0000’ psect data,class=CODE,space=0,align=0
 2 global _input
 3 align.w
 4 0000’ _input:
 5 0000’ 16 00 dw 22

 13 0000’ psect bss,class=DATA,space=1,align=0
 14 global _output
 15 align.w
 16 0000’ _output:
 17 0000’ ds 2

Auto variables and function parameters are local to the function in which they are defined and so are
handled different by the compiler. The may be allocated space dynamically (for example on the stack)
in which case they are not stored in psects by the compiler.

Two addresses are used to refer to the location of a psect: the link address and the load address. The link
address is the address at which the psect (and any objects or labels within the psect) can be accessed
whilst the program is executing. The load address is the address at which the psect will reside in the
output file that creates the ROM image, or, alternatively, the address of where the psect can be accessed
in ROM.

For the psect types that reside in ROM their link and load address are be the same as they reside in ROM
and are never copied to a new location. Psects that are allocated space in RAM only will have a link
address, but a load address is not applicable. The compiler often makes the load address of these psects
the same as the link address. Since no ROM image of these psects is formed, the load address is
meaningless and can be ignored. Any access to objects defined in these psects is performed using the
link address. The psects that reside in ROM, but are copied to RAM have link and load addresses that
are usually different. Any references to symbols or labels in these psects are always made using the link
addresses.

2.3 Linking the psects

After the code generator and assembler6 have finished their jobs, the object files passed to the linker can
be considered to be a mixture of psects that have to be grouped and positioned in the available ROM and
40

Linking the psects

 2

er there

hen the
e stored
t is not
 the area
 hence

ctives to
ey since

n-time
tialize.

chieved
urrent

ut with
ed and
 vectors
rs area.
RAM. The linker options indicate the memory that is available and the flags associated with a psect
directive indicate how the psects are to be handled.

2.3.1 Grouping psects

There are two psect flags that affect the grouping, or merging, of the psects. These are the LOCAL and
GLOBAL flags. GLOBAL is the default and tells the linker that the psects should be grouped together with
other psects of the same name to form a single psect. LOCAL psects are not grouped in this way unless
they are contained in the same module. Two local psects which have the same name, but which are
defined in different modules are treated and positioned as separate psects.

2.3.2 Positioning psects

Several psect flags affect how the psects are positioned in memory. Psects which have the same name
can be positioned in one of two ways: they can be overlaid one another, or they can be placed so that
each takes up a separate area of memory.

Psects which are to be overlaid will use the OVLRD psect directive flag. At first it may seem unusual to
have overlaid psects as they might destroy other psects’ contents as they are positioned, howev
are instances where this is desirable.

One case where overlaid psect are used is when the compiler has to use temporary variables. W
compiler has to pass several data objects to, say, a floating-point routine, the floats may need to b
in temporary variables which are stored in RAM. It is undesirable to have the space reserved if i
going to be used, so the routines that use the temporary objects are also responsible for defining
and reserving the space in which these will reside. However several routines may called and
several temporary areas created. To get around this problem, the psects which contain the dire
reserve space for the objects are defined as being overlaid so that if more than one is defined, th
simply overlap each other.

Another situation where overlaid psects are used is when defining the interrupt vectors. The ru
code usually defines the reset vector, but other vectors are left up to the programmer to ini
Interrupt vectors are placed into a separate psect (often called vectors). Each vector is placed at an
offset from the beginning of the vectors area appropriate for the target processor. The offset is a
via an ORG assembler directive which moves the location counter relative to the beginning of the c
psect. The macros contained in the header file <intrpt.h>, which allow the programmer to define
additional interrupt vectors, also place the vectors they define into a psect with this same name, b
different offsets, depended on the interrupt vector being defined. All these psects are group
overlaid such that the vectors are correctly positioned from the same address - the start of the
psect. This merged psect is then positioned by the linker so that it begins at the start of the vecto

6. The assembler does not modify psect directives in any way other than encoding the details of each into the object
file.
HI-TECH C Z80 compiler 41

Tutorials

 2
Most other compiler-generated psects are not overlaid and so they will each occupy their own unique
address space. Typically these psects are placed one after the other in memory, however there are several
psect flags that can alter the positioning of the psects. Some of these psect flags are discussed below.

The RELOC flag is used when psects must be aligned on a boundary in memory. This boundary is a
multiple of the value specified with the flag. The ABS flag specifies that the psect is absolute and that it
should start at address 0h. Remember, however, that if there are several psects which use this flag, then
after grouping only one can actually start at address 0h unless the psects are also defined to be overlaid.
Thus ABS means that one of the psects with this name will be located at address 0h, the others following
in memory subject to any other psect flags used.

2.3.3 Linker options to position psects

The linker is told of the memory setup for a target program by the linker options that are generated by
the compiler driver. The user informs the compiler driver about memory using either the -A option7 with
the command line driver (CLD), or via the ROM & RAM addresses dialogue box under HPD.
Additional linker options indicate how the psects are to be positioned into the available memory.

The linker options are a little confusing at first, but the following example shows how the options could
be built up as a program develops, and then discusses some of the specific schemes used by HI-TECH
compilers. When compiling using either the CLD or HPD, a full set of default linker options are used,
based on either the -A option values, or the ROM & RAM addresses dialogue values. In most cases
the linker options do not need to be modified.

2.3.3.1 Placing psects at an address

Let us assume that the processor in a target system can address 64 kB of memory and that ROM, RAM
and peripherals all share this same block of memory. The ROM is placed in the top 16 kB of memory
(C000h - FFFFh); RAM is placed at addresses from 0h to FFFh.

Let us also assume that three object files passed to the linker: one a run-time object file; the others
compiled from the programmer’s C source code. Each object file contains a compiler-generated text
psect (a psect called text): the psect in one file is 100h bytes long; that from other file is 200h bytes
long; that from the run-time object file is 50h long. These psects are to be placed in ROM and all have
the simple definition generated by the code generator:

psect text,class=CODE

7. The -A option on the PIC compiler serves a different purpose. Most PIC devices only have internal memory and so
a memory option is not required by the compiler. High-end PICs may have external memory, this is indicated to the
compiler by using a -ROM option to the CLD or by the RAM & ROM addresses... dialogue box under HPDPIC.
The -A option is used to shift the entire ROM image, when using highend devices.
42

Linking the psects

 2
The CLASS flag is typically used with these types of psects and is considered later in this tutorial. By
default, these psects are GLOBAL, hence after scanning all the object files passed to it, the linker will
group all the text psects together so that they are contiguous8 and form one larger text psect. The
following -p linker option could be used to position the text psect at the bottom of ROM.

-ptext=0C000h

There is only one address specified with this linker option since the psects containing code are not
copied from ROM to RAM at any stage and the link and load addresses are the same.

The linker will relocate the grouped text psect so that it starts at address C000h. The linker will then
define two global symbols with names: __Ltext and __Htext and equate these with the values: C000h
and C350h which are the start and end addresses, respectively, of the text psect group.

Now let us assume that the run-time file and one of the programmer’s files contains interrupt vectors.
These vectors must be positioned at the correct location for this processor. Our fictitious processor
expects its vectors to be present between locations FFC0h and FFFFh. The reset vector takes up two
bytes at address FFFEh an FFFFh, and the remaining locations are for peripheral interrupt vectors. The
run-time code usually defines the reset vector using code like the following.

globalstart
psect vectors,ovlrd
org 3Eh
dw start

This assembler code creates a new psect which is called vectors. This psect uses the overlaid flag
(OVLRD) which tells the linker that any other psects with this name should be overlaid with this one, not
concatenated with it. Since the psect defaults to being global, even vectors psects in other files will be
grouped with this one. The org directive tells the assembler to advance 3Eh locations into this psect. It
does not tell the assembler to place the object at address 3Eh. The final destination of the vector is
determined by the relocation of the psect performed by the linker later in the compilation process. The
assembler directive dw is used to actually place a word at this location. The word is the address of the
(global) symbol start. (start or powerup are the labels commonly associated with the beginning of
the run-time code.)

In one of the user’s source files, the macro ROM_VECTOR has been used to supply one of the peripheral
interrupts at offset 10h into the vector area. The macro expands to the following in-line assembler code.

8. Some processors may require word alignment gaps between code or data. These gaps can be handled by the com-
piler, but are not considered here.
HI-TECH C Z80 compiler 43

Tutorials

 2
global_timer_isr
psect vectors,ovlrd
org 10h
dw _timer_isr

After the first stages of the compilation have been completed, the linker will group together all the
vectors psects it finds in all the object files, but they will all start from the same address, i.e. they are
all placed one over the other. The final vectors psect group will contain a word at offset 10h and
another at offset 3Eh. The space from 0h to offset 0Fh and in-between the two vectors is left untouched
by the linker. The linker options required to position this psect would be:

-pvectors=0FFC0h

The address given with this option is the base address of the vectors area. The org directives used to
move within the vectors psects hence were with respect to this base address.

Both the user’s files contain constants that are to be positioned into ROM. The code generator generates
the following psect directive which defines the psect in which it store the values.

psect const

The linker will group all these const psects together and they can be simply placed like the text psects.
The only problem is: where? At the moment the text psects end at address C34Fh so we could position
the const psects immediately after this at address C350h, but if we modify the program, we will have to
continually adjust the linker options. Fortunately we can issue a linker option like the following.

-ptext=0C000h,const

We have not specified an address for the psect const, so it defaults to being the address immediately
after the end of the preceding psect listed in the option, i.e. the address immediately after the end of the
text psect. Again, the const psect resides in ROM only, so this one address specifies both the link and
load addresses.

Now the RAM psects. The user’s object files contain uninitialised data objects. The code generator
generates bss psects in which are used to hold the values stored by the uninitialised C objects. The area
of memory assigned to the bss psect will have to be cleared before main() is executed.

At link time, all bss psects are grouped and concatenated. The psect group is to be positioned at the
beginning of RAM. This is easily done via the following option.

-pbss=0h

The address 0h is the psect’s link address. The load address is meaningless, but will default to the link
address. The run-time code will clear the area of memory taken up by the bss psect. This code will use
44

Linking the psects

 2
the symbols __Lbss and __Hbss to determine the starting address and the length of the area that has to
be cleared.

Both the user’s source files contain initialised objects like the following.

int init = 34;

The value 34 has to be loaded into the object init before the main() starts execution. Another of the
tasks of the run-time code is to initialise these sorts of objects. This implies that the initial values must
be stored in ROM for use by the run-time code. But the object is a variable that can be written to, so it
must be present in RAM once the program is running. The run-time code must then copy the initialised
values from ROM into RAM just before main() begins. The linker will place all the initial values into
ROM in exactly the same order as they will appear in RAM so that the run-time code can simply copy
the values from ROM to RAM as a single block. The linker has to be told where in ROM these values
should reside as it generates the ROM image, but is must also know where in RAM these objects will
be copied to so that it can leave enough room for them and resolve the run-time addresses for symbols
in this area.

The complete linker options for our program, including the positioning of the data psects, might look
like:

-ptext=0C000h,const
-pvectors=0FFC0h
-pbss=0h,data/const

That is, the data psect should be positioned after the end of the bss psect in RAM. The address after
the slash indicates that this psect will be copied from ROM and that its position in ROM should be
immediately after the end of the const psect. As with other psects, the linker will define symbols
__Ldata and __Hdata for this psect, which are the start and end link addresses, respectively, that will
be used by the run-time code to copy the data psect group. However with any psects that have different
link and load addresses, another symbol is also defined, in this case: __Bdata. This is the load address
in ROM of the data psect.

2.3.3.2 Exceptional cases

The PIC compiler handles the data psects in a slightly different manner. It actually defines two separate
psects: one for the ROM image of the data psects; the other for the copy in RAM. This is because the
length of the ROM image is different to the length of the psect in RAM. (The ROM is wider than the
RAM and values stored in ROM may be encoded as retlw instructions.) The linker options in this case
will contain two separate entries for both psects instead of the one psect with different link and load
addresses specified. The names of the data psects in RAM are similar to rdata_0; those in ROM are
like idata_0. The digit refers to a RAM bank number.
HI-TECH C Z80 compiler 45

Tutorials

 2
The link and load addresses reported for psects that contain objects of type bit have slightly different
meaning to ordinary link and load addresses. In the map file, the link address listed is the link address
of the psect specified as a bit address. The load address is the link address specified as a byte address.
Bit objects cannot be initialised, so separate link and load addresses are not required. The linker knows
to handle these psects differently because of the BIT psect flag. Bit psects will be reported in the map
file as having a scale value of 8. This relates to the number of objects that can be positioned in an
addressable unit.

2.3.3.3 Psect classes

Now let us assume that more ROM is added to our system since the programmers have been busy and
filled the 16 kB currently available. Several peripheral devices were placed in the area from B000h to
BFFFh so the additional ROM is added below this from 7000h to AFFFh. Now there are two separate
areas of ROM and we can no longer give a single address for the text psects.

What we can now do to take advantage of this extra memory is define several ranges of addresses that
can be used by ROM-based psects. This can be done by creating a psect class. There are several ways
that psects can be linked when using classes. Classes are commonly used by HI-TECH C compilers to
position the code or text psects. Different strategies are employed by different compilers to better suit
the processor architecture for which the compilation is taking place. Some of these schemes are
discussed below. If you intend to modify the default linker options or generate your own psects, check
the linker options and psect directives generated by the code generator for the specific compiler you are
using.

A class can be defined using another linker option. For example to use the additional memory added to
our system we could define a class using the linker option:

-ACODE=7000h-AFFFh,C000h-FFFFh

The option is a -A immediately followed by the class name and then a comma-separated list of address
ranges. Remember this is an option to the linker, not the CLD. The above example defines two address
ranges for a class called CODE.

Here is how drivers for the 8051, 8051XA and Z80 compilers define the options passed to the linker to
handle the code psects. In large model the 8051 psect definitions for psects that contain code are as
follows.

psect text,class=CODE

The CLASS psect flag specifies that the psect text is a member of the class called CODE.

If a single ROM space has been specified by either not using the -ROM option with the CLD or by
selecting single ROM in the ROM & RAM addresses dialogue box under HPD, no class is defined
and the psects are linked using a -p option as we have been doing above. Having the psects within a
46

Linking the psects

 2

sing

or each
class, but not having that class defined is acceptable, provided that there is a -p option to explicitly
position the psects after they have been grouped. If there is no class defined and no -p option a default
memory address is used which will almost certainly be inappropriate.

If multiple ROM spaces have been specified by using either the -ROMranges option with the CLD, or
specifying the address ranges in the ROM & RAM addresses (after selecting the multiple ROMs
button) dialogue box under HPD, a class is defined by the driver using the -A linker option similar to
that shown above and the -p option is omitted from the options passed to the linker.

The PIC compiler does things a little differently as it has to contend with multiple ROM pages that are
quite small. The PIC code generator defines the psects which hold code like the following.

psect text0,local,class=CODE,delta=2

The DELTA value relates to the ROM width and need not be considered here. The psects are placed in
the CODE class, but note that the they are made local using the LOCAL psect flag. The psects that are
generated from C functions each have unique names which proceed: text0, text1, text2 etc. Local
psects are not grouped across modules, i.e. if there are two modules, each containing a local psect of the
same name, they are treated are separate psects. Local psects cannot be positioned using a -p linker
option as there can be more than one psect with that name. Local psects must be made members of a
class, and the class defined using a -A linker option. The PIC works in this way to assist with the
placement of the code in its ROM pages. This is discussed further in Section 2.3.4 on page 49.

A few general rules apply when using classes: If, for example, you wanted to place a psect that is not
already in a class into the memory that a class occupies, you can replace an address or psect name in a
linker -p option with a class name. For instance, in the generic example discussed above, the const
psect was placed after the text psect in memory. If you would now like this psect to be positioned in
the memory assigned to the CODE class the following linker options could be used.

-pconst=CODE
-pvectors=0FFC0h
-pbss=0h,data/CODE
-ACODE=7000h-AFFFh,C000h-FFFFh

Note also that the data psect’s load location has been swapped from after the end of the const psect to
within the memory assigned to the CODE class to illustrate that the load address can be specified u
the class name.

Another class definition that is sometimes seen in PIC linker options specifies three addresses f
memory range. Such an option might look something like:

-AENTRY=0h-FFh-1FFh
HI-TECH C Z80 compiler 47

Tutorials

 2

ress can
 is not
, in this

ould be
 that is

served
, the
 data
to copy
The first range specifies the address range in which the psect must start. The psects are allowed to
continue past the second address as long as they do not extend past the last address. For the example
above, all psects that are in the ENTRY class must start at addresses between 0 and FFh. The psects must
end before address 1FFh. No psect may be positioned so that its starting address lies between 100h and
1FFh. The linker may, for example, position two psects in this range: the first spanning addresses 0 to
4Fh and the second starting at 50h and finishing at 138h. Such linker options are useful on some PIC
processors (typically baseline PICs) for code psects that have to be accessible to instructions that modify
the program counter. These instructions can only access the first half of each ROM page.

2.3.3.4 User-defined psects

Let us assume now that the programmer wants to include a special initialised C object that has to be
placed at a specific address in memory, i.e. it cannot just be placed into, and linked with, the data psect.
In a separate source file the programmer places the following code.

#pragma psect data=lut
int lookuptable[] = {0, 2, 4, 7, 10, 13, 17, 21, 25};

The pragma basically says, from here onwards in this module, anything that would normally go into the
data psect should be positioned into a new psect called lut. Since the array is initialised, it would
normally be placed into data and so it will be re-directed to the new psect. The psect lut will inherit
any psect options (defined by the psect directive flags) which applied to data.

The array is to be positioned in RAM at address 500h. The -p option above could be modified to include
this psect as well.

-pbss=0h,data/const,lut=500h/

(The load address of the data psect has been returned to its previous setting.) The addresses for this
psect are given as "500h/". The address "500h" specifies the psect’s link address. The load add
be anywhere, but it is desirable to concatenate it to existing psects in ROM. If the link address
followed by a load address at all, then the link and load addresses would be set to be the same
case 500h. The "/", which is not followed by an address, tells the linker that the load address sh
immediately after the end of the previous psect’s load address in the linker options. In this case
the data psect’s load address, which in turn was placed after the const psect. So, in ROM will be
placed the const, data and lut psect, in that order.

Since this is an initialised data psect, it is positioned in ROM and must be copied to the memory re
for it in RAM. Although different link and load addresses have been specified with the linker option
programmer will have to supply the code that actually performs the copy from ROM to RAM. (The
psects normally created by the code generator have code already supplied in the run-time file
the psects.) The following is C code which could perform the copy.
48

Linking the psects

 2

rams.
 symbols.

de
cleared

ct and
exactly
e linker

e linker
erever
class is
extern unsigned char *_Llut, *_Hlut, *_Blut;
unsigned char *i;

void copy_my_psect(void)
{

for(i=_Llut; i<_Hlut; i++, _Blut++)
*i = *_Blut;

}

Note that to access the symbols __Llut etc. from within C code, the first underscore character is
dropped. These symbols hold the addresses of psects, so they are declared (not defined) as pointer
objects in the C code using the extern qualifier. Remember that the object lookuptable will not be
initialised until this C function has been called and executed. Reading from the array before it is
initialized will return incorrect values.

If you wish to have initialised objects copied to RAM before main() is executed, you can write
assembler code, or copy and modify the appropriate routine in the run-time code that is supplied with
the compiler. You can create you own run-time object file by pre-compiling the modified run-time file
and using this object file instead of the standard file that is automatically linked with user’s prog
From assembler, both the underscore characters are required when accessing the psect address

If you define your own psect based on a bss psect, then, in the same way, you will have to supply co
to clear this area of memory if you are to assume that the objects defined within the psect will be
when they are first used.

2.3.4 Issues when linking

The linker uses a relatively complicated algorithm to relocate the psects contained in the obje
library files passed to it, but the linker needs more information than that discussed above to know
how to relocate each psect? This information is contained in other the linker options passed to th
by the driver and in the psect flags which are used with each psect directive. The following explain some
of the issues the linker must take into account.

2.3.4.1 Paged memory

Let’s assume that a processor has two ROM areas in which to place code and constant data. Th
will never split a psect over any memory boundary. A memory boundary is assumed to exist wh
there is a discontinuity in the address passed to the linker in the linker options. For example, if a
specified using the addresses as follows:

-ADATA=0h-FFh,100h-1FFh
HI-TECH C Z80 compiler 49

Tutorials

 2

 xxxx
 errors
ction
 the code

location
 memory.
nges and
s of the
way
 able to
s ranges
dividual

eas for
d from
sect at
mory
re
It is assumed that some boundary exists between address FFh and 100h, even though these addresses are
contiguous. This is why you will see contiguous address ranges specified like this, instead of having one
range covering the entire memory space. To make it easy to specify similar contiguous address ranges,
a repeat count can be used, like:

-ADATA=0h-FFhx2

can be used; in this example, two ranges are specified: 0 to FFh and then 100h to 1FFh. Some processors
have memory pages or banks. Again, a psect will not straddle a bank or page boundary.

Given that psects cannot be split over boundaries, having large psects can be a problem to relocate. If
there are two, 1 kB areas of memory and the linker has to position a single 1.8 kB psect in this space, it
will not be able to perform this relocation, even though the size of the psect is smaller than the total
amount of memory available. The larger the psects, the more difficult it is for the linker to position them.
If the above psect was split into three 0.6 kB psects, the linker could position two of them - one in each
memory area - but the third would still not fit in the remaining space in either area. When writing code
for processors like the PIC, which place the code generated from each C function into a separate, local
psect, functions should not become too long.

If the linker cannot position a psect, it generates a "Can’t find space for psect xxxx" error, where
is the name of the psect. Remember that the linker relocates psects so it will not report memory
with specific C functions or data objects. Search the assembler listing file to identify which C fun
is associated with the psect that is reported in the error message if local psects are generated by
generator.

Global psects that are not overlaid are concatenated to form a single psect by the linker before re
takes place. There are instances where this grouped psect appears to be split again to place it in
Such instances occur when the psect class within which it is a member covers several address ra
the grouped psect is too large to fit any of the ranges. The linker may use intermediate grouping
psects, called clutches to facilitate relocation within class address ranges. Clutches are in no
controllable by the programmer and a complete understanding of there nature is not required to
understand or use the linker options. It is suffice to say that global psects can still use the addres
within a class. Note that although a grouped psect can be comprised of several clutches, an in
psect defined in a module can never be split under any circumstances.

2.3.4.2 Separate memory areas

Another issue faced by the linker is this: On some processors, there are distinct memory ar
program and data, i.e. Harvard architecture chips like the 8051XA. For example, ROM may exten
0h - FFFFh and separate RAM may extend from 0h - 7FFh. If the linker is asked to position a p
address 100h via a -p option, how does the linker know whether this is an address in program me
or in the data space? The linker makes use of the SPACE psect flag to determine this. Different areas a
50

Linking the psects

 2
he same
piler will
ccess four
st bank
100h to
embler

ate
ory

stract
ile. A
area in
egment

d into the
ere the
 defined

d
 it will
embler
simply
s, that

ch that
 with the
ts are

bjects
r the top
assigned a different space value. For example ROM may be assigned a SPACE value of 0 and RAM a
SPACE flag of 1. The space flags for each psect are shown in the map file.

The space flag is not used when the linker can distinguish the destination area of an object from its
address. Some processors use memory banks which, from the processors’s point of view, cover t
range of addresses, but which are within the same distinct memory area. In these cases, the com
assign unique addresses to objects in banked areas. For example, some PIC processors can a
banks of RAM, each bank covering addresses 0 to 7Fh. The compiler will assign objects in the fir
(bank 0) addresses 0 to 7Fh; objects in the second bank: 80h to FFh; objects in the third bank:
17Fh etc. This extra bank information is removed from the address before it is used in an ass
instruction. All PIC RAM banks use a SPACE flag of 1, but the ROM area on the PIC is entirely separ
and uses a different SPACE flag (0). The space flag is not relevant to psects which reside in both mem
areas, such as the data psects which are copied from ROM to RAM.

After relocation is complete, the linker will group psects together to form a segment. Segments, along
with clutches, are rarely mentioned with the HI-TECH compiler simply because they are an ab
object used only by the linker during its operation. Segment details will appear in the map f
segment is a collection of psects that are contiguous and which are destined for a specific
memory. The name of a segment is derived from the name of the first psect that appears in the s
and should not be confused with the psect which has that name.

2.3.4.3 Objects at absolute addresses

After the psects have been relocated, the addresses of data objects can be resolved and inserte
assembler instructions which make reference to an object’s address. There is one situation wh
linker does not determine and resolve the address of a C object. This is when the object has been
as absolute in the C code. The following example shows the object DDRA being positioned at address
200h.

unsigned char DDRA @ 0x200;

When the code generator makes reference to the object DDRA, instead of using a symbol in the generate
assembler code which will later be replaced with the object’s address after psect relocation,
immediately use the value 200h. The important thing to realise is that the instructions in the ass
that access this object will not have any symbols that need to be resolved, and so the linker will
skip over them as they are already complete. If the linker has also been told, via its linker option
there is memory available at address 200h for RAM objects, it may very well position a psect su
an object that resides in this psect also uses address 200h. As there is no symbol associated
absolute object, the linker will not see that two objects are sharing the same memory. If objec
overlapping, the program will most likely fail unpredictably.

When positioning objects at absolute address, it vital to ensure that the linker will not position o
over those defined as absolute. Absolute objects are intended for C objects that are mapped ove
HI-TECH C Z80 compiler 51

Tutorials

 2

lude,

rmally

es

es,
of hardware registers to allow the registers to be easily access from the C source. The programmer must
ensure that the linker options do not specify that there is any general-purpose RAM in the memory space
taken up by the hardware. Ordinary variables to be positioned at absolute addresses should be done so
using a separate psect (by simply defining your own using a psect directive in assembler code, or by
using the #pragma psect directive in C code) and linker option to position the objects. If you must use
an absolute address for an object in general-purpose RAM, make sure that the linker options are
modified so that the linker will not position other psects in this area.

2.3.5 Modifying the linker options

In most applications, the default linker options do not need to be modified. It is recommended that if you
think the options should be modified, but you do not understand how the linker options work, that you
seek technical assistance in regard to the problem at hand.

If you do need to modify the linker options, there are several ways to do this. If you are simply adding
another option to those present by default, the option can be specified to the CLD using a -L option. To
position the lut psect that was used in the earlier example, the following option could be used.

-L-plut=500/const

The -L simply passes whatever follows to the linker. If you want to add another option to the default
linker options and you are using HPD and a project, then it is a simple case of opening the linker
options... dialogue box and adding the option to the end of those already there. The options should be
entered exactly as they should be presented to the linker, i.e. you do not need the -L at the front.

If you want to modify existing linker options other than simply changing the memory address that are
specified with the -A CLD option, then you cannot use the CLD to do this directly. What you will need
to do is to perform the compilation and link separately. Let’s say that the file main.c and extra.c are
to be compiled for the 8051 with modified linker options. First we can compile up to, but not inc
the link stage by using a command line something like this.

c51 -o -Zg -asmlist -C main.c extra.c

The -C options stops the compilation before the link stage. Include any other options which are no
required. This will create two object files: main.obj and extra.obj, which then have to be linked
together.

Run the CLD again in verbose mode by giving a -v option on the command line, passing it the nam
of the object files created above, and redirect the output to a file. For example:

c51 -v -A8000,0,100,0,0 main.obj extra.obj > main.lnk

Note that if you do not give the -A CLD option, the compiler will prompt you for the memory address
but with the output redirected, you will not see the prompts.
52

Linking the psects

 2
The file generated (main.lnk) will contain the command line that CLD generated to run the linker with
the memory values specified using the -A option. Edit this file and remove any messages printed by the
compiler. Remove the command line for any applications run after the link stage, for example objtohex
or cromwell, although you should take note of what these command lines are as you will need to run
these applications manually after the link stage. The linker command line is typically very long and if a
DOS batch file is used to perform the link stage, it is limited to lines 128 characters long. Instead the
linker can be passed a command file which contains the linker options only. Break up the linker
command line in the file you have created by inserting backslash characters "\" followed by a return.
Also remove the name and path of the linker executable from the beginning of the command line so that
only the options remain. The above command line generated a main.lnk file that was then edited as
suggested above to give the following.

-z -pvectors=08000h,text,code,data,const,strings \
-prbit=0/20h,rbss,rdata/strings,irdata,idata/rbss \
-pbss=0100h/idata -pnvram=bss,heap -ol.obj \
-m/tmp/06206eaa /usr/hitech/lib/rt51--ns.obj main.obj \
extra.obj /usr/hitech/lib/51--nsc.lib

Now, with care, modify the linker options in this file as required by your application.

Now perform the link stage by running the linker directly and redirecting its arguments from the
command file you have created.

hlink < main.lnk

This will create an output file called l.obj. If other applications were run after the link stage, you will
need to run them to generate the correct output file format, for example a HEX file.

Modifying the options to HPD is much simpler. Again, simply open the linker options... dialogue box
and make the required changes, using the buttons at the bottom of the box to help with the editing. Save
and re-make your project.

The map file will contain the command line actually passed to the linker and this can be checked to
confirm that the linker ran with the new options.
HI-TECH C Z80 compiler 53

Tutorials

 2
54

 3
Using HPDZ

3.1 Introduction

This chapter covers HPD, the HI-TECH C Programmer’s Development system integrated environment.
It assumes that you have already installed your HI-TECH C compiler. If you haven’t installed your
compiler go to chapter 1, Introduction, and follow the installation instructions there. HPDZ is the version
of HPD applicable to the Z80 compiler.

3.1.1 Starting HPDZ

To start HPDZ, simply type HPDZ at the DOS prompt. After a brief period of disk activity you will be
presented with a screen similar to the one shown in Figure 3 - 1 on page 55.

The initial HPDZ screen is broken into three windows. The top window contains the menu bar, the
middle window the HPDZ text editor and the bottom window is the message window. Other windows

Figure 3 - 1 HPDZ Startup Screen
HI-TECH C Z80 compiler 55

Using HPDZ

 3

d user
 mouse
ce with

isplay
 modes
 before

 the
lues for

 more
he
ne text

s will
n by
may appear when certain menu items are selected. The editor window is what you will use most of the
time.

HPDZ uses the HI-TECH Windows user interface to provide a text screen based, user interface. This has
multiple overlapping windows and pull down menus. The user interface features which are common to
all HI-TECH Windows applications are described later in this chapter.

Alternatively, HPDZ can use a single command line argument. This is either the name of a text file, or
the name of a project file. (Project files are discussed in a later section of this chapter). If the argument
has an extension .PRJ, HPDZ will attempt to load a project file of that name. File names with any other
extension will be treated as text files and loaded by the editor.

If an argument without an extension is given, HPDZ will first attempt to load a .PRJ file, then a .C file.
For example, if the current directory contains a file called X.C and HPDZ is invoked with the command
HPDZ X, it will first attempt to load X.PRJ and when that fails, will load X.C into the editor. If no
source file is loaded into the editor, an empty file with name “untitled” will be started.

3.2 The HI-TECH Windows user interface

The HI-TECH Windows user interface used by HPDZ provides a powerful text screen base
interface. This can be used through the keyboard alone, or with a combination of keyboard and
operations. For new users most operations will be simpler using the mouse, however, as experien
the package is gained, you will learn hot-key sequences for the most commonly used functions.

3.2.1 Hardware requirements

HI-TECH Windows based applications will run on any MS-DOS based machine with a standard d
card capable of supporting text screens of 80 columns by 25 rows or more. Higher resolution text
like the EGA 80 x 43 mode will be recognised and used if the mode has already been selected
HPDZ is executed. Higher modes can also be used with a /screen:xx option as described below.
Problems may be experienced with some poorly written VGA utilities. These may initialize
hardware to a higher resolution mode but leave the BIOS data area in low memory set to the va
an 80 x 25 display.

It is also possible to have HPDZ set the screen display mode on EGA or VGA displays to show
than 25 lines. The option /SCREEN:nn where nn is one of 25, 28, 43 or 50 will cause HPDZ to set t
display to that number of lines, or as close as possible. EGA display supports only 25 and 43 li
screens, while VGA supports 28 and 50 lines as well.

The display will be restored to the previous mode after HPDZ exits. The selected number of line
be saved in the HPDZ.INI file and used for subsequent invocations of HPDZ unless overridde
another /SCREEN option.
56

The HI-TECH Windows user interface

 3
HPDZ will recognize and use any mouse driver which supports the standard INT 33H interface. Almost
all modern mouse drivers support the standard device driver interface. Some older mouse drivers are
missing a number of the driver status calls. If you are using such a mouse driver, HPDZ will still work
with the mouse, but the Mouse Setup dialog in the <<>> menu will not work.

3.2.2 Colours

Colours are used in two ways in HPDZ. First, there are colours associated with the screen display. These
can be changed to suit your own preference. The second use of colour is to optionally code text entered
into the text window. This assists you to see the different elements of a program as it is entered and
compiled. These colours can also be changed to suit your requirements. Colours comprise two elements,
the actual colour and its attributes such as bright or inverse. Table 3 - 1 on page 57 shows the colours
and their values, whilst Table 3 - 2 on page 58 shows the attributes and their meaning.

Any colours are valid for the foreground but only colours 0 to 7 are valid for the background. Table 3 -
3 on page 58 shows the definition settings for the colours used by the editor when colour coding is
selected.

The standard colour schemes for both the display colours and the text editor colour coding can be seen
in the colour settings section of the HPDZ.ini file. The first value in a colour definition is the foreground

Table 3 - 1 Colour values

Value Colour

0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 brown
7 white
8 grey
9 bright blue
10 bright green
11 bright cyan
12 bright red
13 bright magenta
14 yellow
15 bright white
HI-TECH C Z80 compiler 57

Using HPDZ

 3
colour and the second is the background colour. To set the colours to other than the default sets you
should remove the # before each line, then select the new colour value.

The .ini file also contains an example of an alternative standard colour scheme. The same process can
be used to set the colour scheme for the menu bars and menus.

Table 3 - 2 Colour attributes

Attribute description

normal: normal text colour
bright: bright/highlighted text colour
inverse: inverse text colour
frame: window frame colour
title: window title colour
button: colour for any buttons in a window

Table 3 - 3 Colour coding settings

Setting Description

C_wspace: White space - foreground colour affects cursor
C_number: Octal, decimal and hexadecimal numbers
C_alpha: Alphanumeric variable, macro and function names
C_punct: Punctuation characters etc.
C_keyword: C keywords and variable types: eg int, static, etc.
C_brace: Open and close braces: { }
C_s_quote: Text in single quotes
C_d_quote: Text in double quotes
C_comment: Traditional C style comments: /* ... */
Cpp_comment C++ style comments: // ...
C_preprocessor: C pre-processor directives: #blah
Include_file: Include file names
Error: Errors - anything incorrect detected by the editor
Asm_code: Inline assembler code (#asm...#endasm)
Asm-comment: Assembler comments: ; ...
58

The HI-TECH Windows user interface

 3
3.2.3 Pull-down menus

HI-TECH Windows includes a system of pull-down menus which operate from a menu bar across the
top of the screen. The menu bar is broken into a series of words or symbols, each of which is the title of
a single pull-down menu.

The menu system can be used with the keyboard, mouse, or a combination of mouse and keyboard
actions. The keyboard and mouse actions that are supported are listed in Table 3 - 4 on page 59.

3.2.3.1 Keyboard menu selection

To select a menu item by keyboard press alt-Space to open the menu system. Then use the arrow keys
to move to the desired menu and highlight the item required. When the item required is highlighted
select it by pressing Enter. Some menu items will be displayed with lower intensity or a different colour
and are not selectable. These items are disabled because their selection is not appropriate within the
current context of the application. For example, the Save project item will not be selectable if no project
has been loaded or defined.

3.2.3.2 Mouse menu selection

Selecting a menu item using the mouse appears to be somewhat awkward to new users. However, it soon
becomes second nature. To open the menu system, move the pointer to the title of the menu which you
require and press the left button. You can browse through the menu system by holding the left button
down and dragging the mouse across the titles of several menus, opening each in turn. You may also
operate the menu system with the middle button on three button mice. Press the middle button to bring
the menu bar to the front. This makes it selectable even if it is completely hidden by a zoomed window.

Once a menu has been opened, two styles of selection are possible. If the left or middle button is released
while no menu item is highlighted, the menu will be left open. Then you can select using the keyboard

Table 3 - 4 Menu system key and mouse actions

Action Key Mouse

Open menu Alt-space Press left button in menu bar or press middle button
anywhere in screen

Escape from menu Alt-space or Escape Press left button outside menu system displays
Select item Enter Release left or centre button on highlighted item or

click left or centre button on an item
Next menu Right arrow Drag to right
Previous menu Left arrow Drag to left
Next item Down arrow Drag downwards
Previous item Up arrow Drag upwards
HI-TECH C Z80 compiler 59

Using HPDZ

 3
or by moving the pointer to the desired menu item and clicking the left or middle mouse button. If the
mouse button is left down after the menu is opened, you can select by dragging the mouse to the desired
item and releasing the button.

3.2.3.3 Menu hot keys

When browsing through the menu system you will notice that some menu items have hot key sequences
displayed. For example, the HPDZ menu item Save has the key sequence alt-S shown as part of the
display. When a menu item has a key equivalent, it can be selected directly by pressing that key without
opening the menu system. Key equivalents will be either alt-alphanumeric keys or function keys.
Where function keys are used, different but related menu items will commonly be grouped on the one
key. For example, in HPDZ F3 is assigned to Compile and Link, shift-F3 is assigned to Compile
to .OBJ and ctrl-F3 is assigned to Compile to .AS.

Key equivalents are also assigned to entire menus, providing a convenient method of going to a
particular menu with a single keystroke. The key assigned will usually be alt and the first letter of the
menu name, for example alt-E for the Edit menu. The menu key equivalents are distinguished by being
highlighted in a different colour (except monochrome displays) and are highlighted with inverse video
when the alt key is depressed. A full list of HPDZ key equivalents is shown in Table 3 - 5 on page 61.

3.2.4 Selecting windows

HI-TECH Windows allows you to overlap or tile windows. Using the keyboard, you can bring a window
to the front by pressing ctrl-Enter one or more times. Each time ctrl-Enter is pressed, the rearmost
window is brought to the front and each other window on screen shuffles one level towards the back. A
series of ctrl-Enter presses will cycle endlessly through the window hierarchy.

Using the mouse, you can bring any visible window to the front by pressing the left button in its content
region1. A window can be made rearmost by holding the alt key down and pressing the left button in its
content region. If a window is completely hidden by other windows, it can usually be located either by
pressing ctrl-Enter a few times or by moving other windows to the back with alt-left-button.

Some windows will not come to the front when the left button is pressed in them. These windows have
a special attribute set by the application and are usually made that way for a good reason. To give an
example, the HPDZ compiler error window will not be made front most if it is clicked. Instead it will
accept the click as if it were already the front window. This allows the mouse to be used to select the
compiler errors listed, while leaving the editor window at the front, so the program text can be altered.

1. * Pressing the left button in a window frame has a completely different effect, as discussed later in this
chapter.
60

The HI-TECH Windows user interface

 3
Table 3 - 5 HPDZ menu hot keys

Key Meaning

Alt-O Open editor file
Alt-N Clear editor file
Alt-S Save editor file
Alt-A Save editor file with new name
Alt-Q Quit to DOS
Alt-J DOS Shell
Alt-F Open File menu
Alt-E Open Edit menu
Alt-I Open Compile menu
Alt-M Open Make menu
Alt-R Open Run menu
Alt-T Open Options menu
Alt-U Open Utility menu
Alt-H Open Help menu
Alt-P Open Project file
Alt-W Warning level dialog
Alt-Z Optimization menu
Alt-D Command.com
F3 Compile and link single file
Shift-F3 Compile to object file
Ctrl-F3 Compile to assembler code
Ctrl-F4 Retrieve last file
F5 Make target program
Shift-F5 Re-link target program
Ctrl-F5 Re-make all objects and target program
Alt-P Load project file
Shift-F7 User defined command 1
Shift-F8 User defined command 2
Shift-F9 User defined command 3
Shift-F10 User defined command 4
F2 Search in edit window
Alt-X Cut to clipboard
Alt-C Copy to clipboard
Alt-V Paste from clipboard
HI-TECH C Z80 compiler 61

Using HPDZ

 3

ond.
bed
n you
edge
dow

ill
3.2.5 Moving and resizing windows

Most windows can be moved and resized by the user. There is nothing on screen to distinguish windows
which cannot be moved or resized. If you attempt to move or resize and window and nothing happens,
it indicates that the window cannot be resized. Some windows can be moved but not resized, usually
because their contents are of a fixed size and resizing would not make sense. The HPDZ calculator is an
example of a window which can be moved but not resized.

Windows can be moved and resized using the keyboard or the mouse. Using the keyboard, move/resize
mode can be entered by pressing ctrl-alt-space. The application will respond by replacing the menu bar
with the move/resize menu strip. This allows the front most window to be moved and resized. when the
resizing is complete you should press Enter to return to the operating function of the window. A full list
of all the operating keys is shown in Table 3 - 6 on page 62.

Move/resize mode can be exited with any normal application action, like a mouse click, pressing a hot
key or menu system activation by pressing alt-space. There are other ways of moving and resizing
windows:

r Windows can be moved and resized using the mouse. You can move any visible window by
pressing the left mouse button on its frame, dragging it to a new position and releasing the
button. If a window is “grabbed” near one of its corners the pointer will change to a diam
Then you can move the window in any direction, including diagonally. If a window is grab
near the middle of the top or bottom edge the pointer will change to a vertical arrow. The
can move the window vertically. If a window is grabbed near the middle of the left or right
the pointer will change to a horizontal arrow. Then it will only be possible to move the win
horizontally.

r If a window has a scroll bar in its frame, pressing the left mouse button in the scroll bar w

Table 3 - 6 Resize mode keys

Key Action

Left arrow Move window to right
Right arrow Move window to left
Up arrow Move window upwards
Down arrow Move window downwards
Shift-left arrow Shrink window horizontally
Shift-right arrow Expand window horizontally
Shift-up arrow Shrink window vertically
Shift-down arrow Expand window vertically
Enter or Escape Exit move/resize mode
62

The HI-TECH Windows user interface

 3
not move the window. Instead it activates the scroll bar, sending scroll messages to the
application. If you want to move a window which has a frame scroll bar, just select a different
part of the frame.

r Windows can be resized using the right mouse button.You can resize any visible window by
pressing the right mouse button on its bottom or left frame. Then drag the frame to a new
boundary and release the button. If a window is grabbed near its lower right corner the pointer
changes to a diamond and it is be possible to resize the window in any direction. If the frame
is grabbed anywhere else on the bottom edge, it is only possible to resize vertically. If the
window is grabbed anywhere else on the right edge it is only possible to resize horizontally. If
the right button is pressed anywhere in the top or left edges nothing will happen.

r You can also zoom a window to its maximum size. The front most window can be zoomed by
pressing shift-(keypad)+, if it is zoomed again it reverts to its former size. In either the zoomed
or unzoomed state the window can be moved and resized. Zoom effectively toggles between
two user defined sizes. You can also zoom a window by clicking the right mouse button in its
content region.

3.2.6 Buttons

Some windows contain buttons which can be used to select particular actions immediately. Buttons are
like menu items which are always visible and selectable. A button can be selected either by clicking the
left mouse button on it or by using its key equivalent. The key equivalent to a button will either be
displayed as part of the button, or as part of a help message somewhere else in the window. For example,
the HPDZ error window (Figure 3 - 6 on page 68) contains a number of buttons, to select HELP you
would either click the left mouse button on it or press F1.

3.2.7 The Setup menu

If you open the system menu, identified by the symbol <<>> on the menu bar, you will find two entries:
the About HPDZ entry, which displays information about the version number of HPDZ; and the Setup
entry. Selecting the Setup entry opens a dialog box as shown in Figure 3 - 2 on page 64. This box displays
information about HPDZ’s memory usage, and allows you to set the mouse sensitivity, whether the time
of day is displayed in the menu bar, and whether sound is used. After changing mouse sensitivity values,
you can test them by clicking on the Test button. This will change the mouse values so you can test the
altered sensitivity. If you subsequently click Cancel, they will be restored to the previous values.
Selecting OK will confirm the altered values, and save them in HPDZ’s initialisation file, so they will
be reloaded next time you run HPDZ.The sound and clock settings will be stored in the initialisation file
if you select OK.
HI-TECH C Z80 compiler 63

Using HPDZ

 3

hello
3.3 Tutorial: Creating and compiling a C program

This tutorial should be sufficient to get you started using HPDZ. It does not attempt to give you a
comprehensive tour of HPDZ’s features, that is left to the reference section of this chapter. Even if you
are an experienced C programmer but have not used a HI-TECH Windows based application before, we
strongly suggest that you complete this tutorial.

Before starting HPDZ, you need to create a work directory. Make sure you are logged to the root
directory on your hard disk and type the following commands:

C:\> md tutorial
C:\> cd tutorial
C:\> TUTORIAL> HPDZ

You will be presented with the HPDZ startup screen. At this stage, the editor is ready to accept whatever
text you type. A flashing block cursor should be visible in the top left corner of the edit window. You
are now ready to enter your first C program using HPDZ. This will naturally be the infamous “
world” program.

Figure 3 - 2 Setup Dialogue
64

Tutorial: Creating and compiling a C program

 3

n. All
code to
Type the following text, pressing enter once at the end of each line. You can enter blank lines by pressing
enter without typing any text.

#include <stdio.h>

main()
{

printf("Hello, world")
}

Note that a semi-colon has been deliberately omitted from the end of the printf() statement in order to
demonstrate HPDZ’s error handling facilities. Figure 3 - 3 on page 65, shows the screen as it should
appear after entry of the “Hello world” program).

You now have a C program (complete with one error!) entered and almost ready for compilatio
you need to do is save it to a disk file and then invoke the compiler. In order to save your source
disk, you will need to select the Save item from the File menu (Figure 3 - 4 on page 66)

If you do not have a mouse, follow these steps:

Figure 3 - 3 Hello program in HPDZ
HI-TECH C Z80 compiler 65

Using HPDZ

 3
r Open the menu system by pressing alt-Space

r Move to the Edit menu using the right arrow key

r Move down to the Save item using the down arrow key

r When the Save item is highlighted, select it by pressing the Enter key.

If you are using the mouse, follow these steps:

r Open the File menu by moving the pointer to the word File in the menu bar and pressing the
left button

r Highlight the Save item by dragging the mouse downwards with the left button held down, until
the Save item is highlighted

r When the Save item is highlighted, select it by releasing the left button.

When the File menu (Figure 3 - 4 on page 66) was open, you may have noticed that the Save item
included the text alt-S at the right edge of the menu. This indicates that the save command can also be
accessed directly using the hot-key command alt-S. A number of the most commonly used menu
commands have hot-key equivalents which will either be alt-alphanumeric sequences or function keys.

Figure 3 - 4 HPDZ File Menu
66

Tutorial: Creating and compiling a C program

 3

 size.
you
After Save has been selected, you should be presented with a dialog prompting you for the file name. If
HPDZ needs more information, such as a file name, before it is able to act on a command, it will always
prompt you with a standard dialog like the one below.

The dialog contains an edit line where you can enter the file name to be used, and a number of buttons.
These may be used to perform various actions within the dialog. A button may be selected by clicking
the left mouse button with the pointer positioned on it, or by using its key equivalent. The text in the edit
line may be edited using the standard editing keys: left arrow, right arrow, backspace, del and ins. Ins
toggles the line editor between insert and overwrite mode.

In this case, save your C program to a file called “hello.c”. Type hello.c and then press Enter. There
should be a brief period of disk activity as HPDZ saves the file.

You need to set the memory configuration. To do this select ROM & RAM addresses... from the Options
menu. You should use 0 for the ROM address, 8000 for the RAM address and 8000 for the RAM
If you are not using non-volatile RAM or all your RAM is non-volatile set the NVRAM to 0. Once
have set the memory configuration the dialog should look like Figure 3 - 5 on page 67.

Figure 3 - 5 ROM and RAM Address dialog
HI-TECH C Z80 compiler 67

Using HPDZ

 3

essage

 which
.EXE

age "
 It
s are
 will
You are now ready to actually compile the program. To compile and link in a single step, select the
Compile and link item from the Compile menu, using the pull down menu system as before. Note that
Compile and link has key F3 assigned to it: in future you may wish to save time by using this key.

This time, the compiler will not run to completion. This is because we deliberately omitted a semicolon
on the end of a line, in order to see how HPDZ handles compiler errors. After a couple of seconds of
disk activity as the CPP and P1 phases of the compiler run, you should hear a “splat” noise. The m
window will be replaced by a window containing a number of buttons and the message "; expected",
as shown in Figure 3 - 6 on page 68.

The text in the frame of the error window shows the number of compiler errors generated, and
phase of the compiler generated them. Most errors will come from P1.EXE and CGxx.EXE. CPP
and LINK.EXE can also return errors. In this case, the error window frame contains the mess1
error, 0 warnings from p1.exe" indicating that pass 1 of the compiler found 1 fatal error.
is possible to configure HPDZ so that non-fatal warnings will not stop compilation. If only warning
returned, an additional button will appear, labelled CONTINUE. Selecting this button (or F4)
resume the compilation.

Figure 3 - 6 Error window
68

The HPDZ editor

 3

d, and

issing
move
g semi-

e it.
ll goes

 also
ing the
ystem,

itor is
ased
PDZ
readily
In this case, the error message ;expected will be highlighted and the cursor will have been placed on
the start of the line after the printf() statement. This is where the error was first detected. The error
window contains a number of buttons, which allow you to select which error you wish to handle, clear
the error status display, or obtain an explanation of the currently highlighted error. In order to obtain an
explanation of the error message, either select the HELP button with a mouse click, or press F1.

The error explanation for the missing semi-colon does not give much more information than we already
have. However, the explanations for some of the more unusual errors produced by the compiler can be
very helpful. All errors produced by the pre-processor (CPP), pass 1 (P1), code generator (CGxx),
assembler (ASxx) and linker (LINK) are handled. You may dismiss the error explanations by selecting
the HIDE button (press Escape or use the mouse).

In this instance HPDZ has analysed the error, and is prepared to fix the error itself. This is indicated by
the presence of the FIX button in the bottom right hand corner of the error window. If HPDZ is unable
to analyse the error, it will not show the FIX button. Clicking on the FIX button, or pressing F6 will fix
the error by adding a semicolon to the end of the previous line. A “bip-bip” sound will be generate
if there was more than one error line in the error window, HPDZ will move to the next error.

To manually correct the error, move the cursor to the end of the printf() statement and add the m
semi-colon. If you have a mouse, simply click the left button on the position to which you want to
the cursor. If you are using the keyboard, move the cursor with the arrow keys. Once the missin
colon has been added, you are ready to attempt another compilation.

This time, we will “short circuit” the edit-save-compile cycle by pressing F3 to invoke the “Compile and
link” menu item. HPDZ will automatically save the modified file to a temporary file, then compil
The message window will then display the commands issued to each compiler phase in turn. If a
well, you will hear a tone and see the message Compilation successful.

This tutorial has presented a simple overview of single file edit/compile development. HPDZ is
capable of supporting multi-file projects (including mixed C and assembly language sources) us
project facility. The remainder of this chapter presents a detailed reference for the HPDZ menu s
editor and project facility.

3.4 The HPDZ editor

HPDZ has a built in text editor designed for the creation and modification of program text. The ed
loosely based on WordStar with a few minor differences and some enhancements for mouse b
operation. If you are familiar with WordStar or any similar editor you should be able to use the H
editor without further instruction. HPDZ also supports the standard PC keys, and thus should be
usable by anyone familiar with typical MS-DOS or Microsoft Windows editors.

The HPDZ editor is based in its own window, known as the edit window. The edit window is broken up
into three areas, the frame, the content region and the status line.
HI-TECH C Z80 compiler 69

Using HPDZ

 3

owing

 When
point.
ation of
 the text

e file

mber

of the

g
ds

d
 71,

ition.

ill

g the
ode is
aracter

In
3.4.1 Frame

The frame indicates the boundary between the edit window and the other windows on the desktop. The
name of the current edit file is displayed in the top left corner of the frame. If a newly created file is being
edited, the file name will be set to “untitled”. The frame can be manipulated using the mouse, all
the window to be moved around the desktop and re-sized.

3.4.2 Content region

The content region, which forms the largest portion of the window, contains the text being edited.
the edit window is active, the content region will contain a cursor indicating the current insertion
The text in the content region can be manipulated using keyboard commands alone, or a combin
keyboard commands and mouse actions. The mouse can be used to position the cursor, scroll
and select blocks for clipboard operations.

3.4.3 Status line

The bottom line of the edit window is the status line. It contains the following information about th
being edited:

r Line shows the current line number, counting from the start of the file, and the total nu
of lines in the file.

r Col shows the number of the column containing the cursor, counting from the left edge
window.

r If the status line includes the text ^K after the Col entry, it indicates that the editor is waitin
for the second character of a WordStar ctrl-K command. See the section - Keyboard comman
on page 71, for a list of the valid ctrl-K commands.

r If the status line includes the text ^Q after the Col entry, the editor is waiting for the secon
character of a WordStar ctrl-Q command. See the section Keyboard commands on page
for a list of the valid ctrl-Q commands.

r Insert indicates whether text typed on the keyboard will be inserted at the cursor pos
Using the insert mode toggle command (the Ins key on the keypad, or ctrl-V), the mode can
be toggled between Insert and Overwrite. In overwrite mode, text entered on the keyboard w
overwrite characters under the cursor, instead of inserting them before the cursor.

r Indent indicates that the editor is in auto indent mode. Auto indent mode is toggled usin
ctrl-Q I key sequence. By default, auto indent mode is enabled. When auto indent m
enabled, every time you add a new line the cursor is aligned under the first non-space ch
in the preceding line. If the file being edited is a C file, the editor will default to C mode. In this
mode, when an opening brace ('{') is typed, the next line will be indented one tab stop.
addition, it will automatically align a closing brace ('}') with the first non-blank character on
70

The HPDZ editor

 3

ditor
tions.

d and
riven

e

 minor
ehave
ed by
the line containing the opening brace. This makes the auto indent mode ideal for entering C code.

r The SEARCH button may be used to initiate a search operation in the editor. To select SEARCH,
click the left mouse button anywhere on the text of the button. The search facility may also be
activated using the F2 key and the WordStar ctrl-Q F sequence.

r The NEXT button is only present if there has already been a search operation. It searches
forwards for the next occurrence of the search text. NEXT may also be selected using shift-F2
or ctrl-L.

r The PREVIOUS button is used to search for the previous occurrence of the search text. This
button is only present if there has already been a search operation. The key equivalents for
PREVIOUS are ctrl-F2 and ctrl-P.

3.4.4 Keyboard commands

The editor accepts a number of keyboard commands, broken up into the following categories: Cursor
movement commands, Insert/delete commands, Search commands, Block and Clipboard operations and
File commands. Each of these categories contains a number of logically related commands. Some of the
cursor movement commands and block selection operations can also be performed with the mouse.

Table 3 - 8 on page 73 provides an overview of the available keyboard commands and their key
mappings. A number of the commands have multiple key mappings, some also have an equivalent menu
item.

The Zoom command, ctrl-Q Z, is used to toggle the editor between windowed and full-screen mode. In
full screen mode, the HPDZ menu bar may still be accessed either by pressing the Alt key or by using
the middle button on a three button mouse.

3.4.5 Block commands

In addition to the movement and editing command listed in the “Editor Keys” table, the HPDZ e
also supports WordStar style block operations and mouse driven cut/copy/paste clipboard opera

The clipboard is implemented as a secondary editor window, allowing text to be directly entere
edited in the clipboard. The WordStar style block operations may be freely mixed with mouse d
clipboard and cut/copy/paste operations.

The block operations are based on the ctrl-K and ctrl-Q key sequences which are familiar to anyon
who has used a WordStar compatible editor.

Table 3 - 7 on page 72 lists the WordStar compatible block operations which are available.

The block operations behave in the usual manner for WordStar type editors with a number of
differences. “Backwards” blocks, with the block end before the block start, are supported and b
exactly like a normal block selection. If no block is selected, a single line block may be select
HI-TECH C Z80 compiler 71

Using HPDZ

 3
keying block-start (ctrl-K B) or block-end (ctrl-K K). If a block is already present, any block start or
end operation has the effect of changing the block bounds.

Begin Block ctrl-K B
The key sequence ctrl-K B selects the current line as the start of a block. If a block is already present,
the block start marker will be shifted to the current line. If no block is present, a single line block will
be selected at the current line.

End Block ctrl-K K
The key sequence ctrl-K K selects the current line as the end of a block. If a block is already present,
the block end marker will be shifted to the current line. If no block is present, a single line block will be
selected at the current line.

Go To Block Start ctrl-Q B
If a block is present, the key sequence ctrl-Q B moves the cursor to the line containing the block start
marker.

Go To Block End ctrl-Q K
If a block is present, the key sequence ctrl-Q K moves the cursor to the line containing the block end
marker.

Block Hide Toggle ctrl-K H
The block hide/display toggle, ctrl-K H is used to hide or display the current block selection. Blocks
may only be manipulated with cut, copy, move and delete operations when displayed. The bounds of
hidden blocks are maintained through all editing operations so a block may be selected, hidden and re-
displayed after other editing operations have been performed. Note that some block and clipboard
operations change the block selection, making it impossible to re-display a previously hidden block.

Table 3 - 7 Block operation keys

Command Key sequence

Begin block Ctrl-K B
End block Ctrl-K K
Hide or show block Ctrl-K H
Go to block start Ctrl-Q B
Go to block end Ctrl-Q K
Copy block Ctrl-K C
Move block Ctrl-K V
Delete block Ctrl-K Y
Read block from file Ctrl-K R
Write block to file Ctrl-K W
72

The HPDZ editor

 3
Table 3 - 8 Editor keys

Command Key WordStar key

Character left left arrow Ctrl-S
Character right right arrow Ctrl-D
Word left Ctrl-left arrow Ctrl-A
Word right Ctrl-right arrow Ctrl-F
Line up up arrow Ctrl-E
Line down down arrow Ctrl-X
Page up PgUp Ctrl-R
Page down PgDn Ctrl-C
Start of line Home Ctrl-Q S
End of line End Ctrl-Q D
Top of window Ctrl-Q E
Bottom of window Ctrl-Q X
Start of file Ctrl-Home Ctrl-Q R
End of file Ctrl-End Ctrl-Q C
Insert mode toggle Ins Ctrl-V
Insert CR at cursor Ctrl-N
Open new line below cursor Ctrl-O
Delete char under cursor Del Ctrl-G
Delete char to left of cursor Backspace Ctrl-H
Delete line Ctrl-Y
Delete to end of line Ctrl-Q Y
Search F2 Ctrl-Q F
Search forward Shift-F2 Crtl-L
Search backward Alt-F2 Ctrl-P
Toggle auto indent mode Ctrl-Q I
Zoom or unzoom window Ctrl-Q Z
Open file Alt-O
New file Alt-N
Save file Alt-S
Save file - New name Alt-A
HI-TECH C Z80 compiler 73

Using HPDZ

 3
Copy Block ctrl-K C
The ctrl-K C command inserts a copy of the current block selection before the line which contains the
cursor. A copy of the block will also be placed in the clipboard. This operation is equivalent to a
clipboard Copy operation followed by a clipboard Paste operation.

Move Block ctrl-K V
The ctrl-K V command inserts the current block before the line which contains the cursor, then deletes
the original copy of the block. That is, the block is moved to a new position just before the current line.
A copy of the block will also be placed in the clipboard. This operation is equivalent to a clipboard Cut
operation followed by a clipboard Paste operation.

Delete Block ctrl-K Y
The ctrl-K Y command deletes the current block. A copy of the block will also be placed in the
clipboard. This operation may be undone using the clipboard Paste command. This operation is
equivalent to the clipboard Cut command.

Read block from file ctrl-K R
The ctrl-K R command prompts the user for the name of a text file which is to be read and inserted
before the current line. The inserted text will be selected as the current block. This operation may be
undone by deleting the current block.

Write block to file ctrl-K W
The ctrl-K W command prompts the user for the name of a text file to which the current block selection
will be written. This command does not alter the block selection, editor text or clipboard in any way.

Indent
This operation is available via the Edit menu. It will indent by one tab stop, the current block or the
current line if no block is selected.

Outdent
This is the opposite of the previous operation, i.e. it removes one tab from the beginning of each line in
the selection, or the current line if there is no block selected. It is only accessible via the Edit menu.

Comment/Uncomment
Also available in the Edit menu, this operation will insert or remove a C++ style comment leader (//)
at the beginning of each line in the current block, or the current line if there is no block selected. If a line
is currently uncommented, it will be commented, and if it is already commented, it will be
uncommented. This is repeated for each line in the selection. This allows a quick way of commenting
out a portion of code during debugging or testing.

3.4.6 Clipboard editing

The HPDZ editor also supports mouse driven clipboard operations, similar to those supported by several
well known graphical user interfaces.
74

The HPDZ editor

 3
Text may be selected using mouse click and drag operations, deleted, cut or copied to the clipboard, and
pasted from the clipboard. The clipboard is based on a standard editor window and may be directly
manipulated by the user. Clipboard operations may be freely mixed with WordStar style block
operations.

3.4.6.1 Selecting Text

Blocks of text may be selected using left mouse button and click or drag operations. The following
mouse operations may be used:

r A single click of the left mouse button will position the cursor and hide the current selection.
The Hide menu item in the Edit menu, or the ctrl-K H command, may be used to re display a
block selection which was cancelled by a mouse click.

r A double click of the left mouse button will position the cursor and select the line as a single
line block. Any previous selection will be cancelled.

r If the left button is pressed and held, a multi line selection from the position of the mouse click
may be made by dragging the mouse in the direction which you wish to select. If the mouse
moves outside the top or bottom bounds of the editor window, the editor will scroll to allow a
selection of more than one page to be made. The cursor will be moved to the position of the
mouse when the left button is released. Any previous selection will be cancelled.

3.4.6.2 Clipboard commands

The HPDZ editor supports a number of clipboard manipulation commands which may be used to cut
text to the clipboard, copy text to the clipboard, paste text from the clipboard, delete the current selection
and hide or display the current selection. The clipboard window may be displayed and used as a
secondary editing window. A number of the clipboard operations have both menu items and hot key
sequences. The following clipboard operations are available:

Cut alt-X
The Cut option copies the current selection to the clipboard and then deletes the selection. This
operation may be undone using the Paste operation. The previous contents of the clipboard are lost.

Copy alt-C
The Copy option copies the current selection to the clipboard without altering or deleting the selection.
The previous contents of the clipboard are lost.

Paste alt-V
The Paste option inserts the contents of the clipboard into the editor before the current line. The contents
of the clipboard are not altered.
HI-TECH C Z80 compiler 75

Using HPDZ

 3

ertical
.

Hide ctrl-K H
The Hide option toggles the current selection between the hidden and displayed state. This option is
equivalent to the WordStar ctrl-K H command.

Show clipboard
This menu options hides or displays the clipboard editor window. If the clipboard window is visible, it
is hidden. If the clipboard window is hidden it will be displayed and selected as the current window. The
clipboard window behaves like a normal editor window in most respects except that no block operations
may be used. This option has no key equivalent.

Clear clipboard
This option clears the contents of the clipboard, and cannot be undone. If a large selection is placed in
the clipboard, you should use this option to make extra memory available to the editor after you have
completed your clipboard operations.

Delete selection
This menu option deletes the current selection without copying it to the clipboard. Delete selection
should not be confused with Cut as it cannot be reversed and no copy of the deleted text is kept. Use
this option if you wish to delete a block of text without altering the contents of the clipboard.

3.5 HPDZ menus

This section presents a item-by-item description of each of the HPDZ menus. The description of each
menu includes a screen print showing the appearance of the menu within a typical HPDZ screen.

3.5.1 <<>> menu

The <<>> (system) menu is present in all HI-TECH Windows based applications. It contains handy
system configuration utilities and desk accessories which we consider worth making a standard part of
the desktop.

About HPDZ ...
The About HPDZ dialog displays information on the version number of the compiler and the licence
details.

Setup ...
This menu item selects the standard mouse firmware configuration menu, and is present in all HI-TECH
Windows based applications. The “mouse setup” dialog allows you to adjust the horizontal and v
sensitivity of the mouse, the ballistic threshold2 of the mouse and the mouse button auto-repeat rate

2. The ballistic threshold of a mouse is the speed beyond which the response of the pointer to further movement
becomes exponential. Some primitive mouse drivers do not support this feature.
76

HPDZ menus

 3

of the

what

 (e.g.
been

f the
e New

ame,

f the
ry file
t time

 been
This menu item will not be selectable if there is no mouse driver installed. With some early mouse
drivers, this dialog will not function correctly. Unfortunately there is no way to detect drivers which
exhibit this behaviour, because even the “mouse driver version info” call is missing from some
older drivers!

This dialog will also display information about what kind of video card and monitor you have,
DOS version is used and free DOS memory available. See Figure 3 - 2 on page 64

3.5.2 File menu

The File menu contains file handling commands, the HPDZ Quit command and the pick list:

Open ... alt-O
This command loads a file into the editor. You will be prompted for the file name and if a wildcard
“*.C”) is entered, you will be presented with a file selector dialog. If the previous edit file has
modified but not saved, you will be given an opportunity to save it or abort the Open command.

New alt-N
The New command clears the editor and creates a new edit file with default name “untitled”. I
previous edit file has been modified but not saved, you will be given a chance to save it or abort th
command.

Save alt-S
This command saves the current edit file. It the file is “untitled”, you will be prompted for a new n
otherwise the current file name (displayed in the edit window's frame) will be used.

Save as ... alt-A
This command is similar to Save, except that a new file name is always requested.

Autosave ...
This item will invoke a dialog box allowing you to enter a time interval in minutes for auto saving o
edit file. If the value is not zero, then the current edit file will automatically be saved to a tempora
at intervals. Should HPDZ not exit normally, e.g. if your computer suffers a power failure, the nex
you run HPDZ, it will automatically restore the saved version of the file.

Quit alt-Q
The Quit command is used to exit from HPDZ to the operating system. If the current edit file has
modified but not saved, you will be given an opportunity to save it or abort the Quit command.

Clear pick list
This clears the list of recently-opened files which appear below this option.
HI-TECH C Z80 compiler 77

Using HPDZ

 3
Pick list ctrl-F4
The pick list contains a list of the most recently-opened files. A file may be loaded from the pick list by
selecting that file. The last file that was open may be retrieved by using the short-cut ctrl-F4.

3.5.3 Edit menu

The Edit menu contains items relating to the text editor and clipboard. The edit menu is shown inTable 3
- 7 on page 78.

Cut alt-X
The Cut option copies the current selection to the clipboard and then deletes the selection. This
operation may be undone using the Paste operation. The previous contents of the clipboard are lost.

Copy alt-C
The Copy option copies the current selection to the clipboard without altering or deleting the selection.
The previous contents of the clipboard are lost.

Paste alt-V
The Paste option inserts the contents of the clipboard into the editor before the current line. The contents
of the clipboard are not altered.

Figure 3 - 7 HPDZ Edit Menu
78

HPDZ menus

 3
Hide
The Hide option toggles the current selection between the hidden and displayed state. This option is
equivalent to the WordStar ctrl-K H command.

Delete selection
This menu option deletes the current selection without copying it to the clipboard. Delete selection
should not be confused with Cut as it cannot be reversed and no copy of the deleted text is kept. Use
this option if you wish to delete a block of text without altering the contents of the clipboard.

Search ...
This option produces a dialog to allow you to enter a string for a search. You can select to search
forwards or backwards by selecting the appropriate button. You can also decide if the search should be
case sensitive and if a replacement string is to be substituted. You make these choices by clicking in the
appropriate brackets.

Replace ...
This option is almost the same as the search option. It is used where you are sure you want to search and
replace in the one operation. You can choose between two options. You can search and then decide
whether to replace each time the search string is found. Alternatively, you can search and replace
globally. If the global option is chosen, you should be careful in defining the search string as the replace
can not be undone.

Show clipboard
This menu options hides or displays the clipboard editor window. If the clipboard window is already
visible, it will be hidden. If the clipboard window is currently hidden it will be displayed and selected
as the current window. The clipboard window behaves like a normal editor window in most respects
except that no block operations may be used. This option has no key equivalent.

Clear clipboard
This option clears the contents of the clipboard, and cannot be undone. If a large selection is placed in
the clipboard, you should use this option to make extra memory available to the editor after you have
completed your clipboard operations.

Go to line ...
The Go to line command allows you to go directly to any line within the current edit file. You will be
presented with a dialog prompting you for the line number. The title of the dialog will tell you the
allowable range of line numbers in your source file.

Set tab size ...
This command is used to set the size of tab stops within the editor. The default tab size is 8, values from
1 to 16 may be used. For normal C source code 4 is also a good value. The tab size will be stored as part
of your project if you are using the Make facility.
HI-TECH C Z80 compiler 79

Using HPDZ

 3
Indent
Selecting this item will indent by one tab stop the currently highlighted block, or the current line if there
is no block selected.

Outdent
This is the reverse operation to Indent. It removes one tab from the beginning of each line in the currently
selected block, or current line if there is no block.

Comment/Uncomment
This item will insert or remove C++ style comment leaders (//) from the beginning of each line in the
current block, or the current line. This has the effect of commenting out those lines of code so that they
will not be compiled. If a line is already commented in this manner, the comment leader will be removed.

C colour coding
This option toggles the colour coding of text in the editor window. It turns on and off the colours for the
various types of text. A mark appears before this item when it is active. For a full description of colours
used in HPDZ and how to select specific schemes, you should refer to Colours on page 57.

3.5.4 Options menu

The Options menu contains commands which allow selection of compiler options, memory models, and
target processor. Selections made in this menu will be stored in a project file, if one is being used. The
Options menu is shown in Figure 3 - 8 on page 81..

Memory model and chip type...
This option activates a dialog box which allows you to select the memory model and processor type you
wish to use.

Available memory models are small and banked (large). For more information on memory models, see
-Bs: Select Small Memory Model on page 101 and -Bl: Select Large Memory Model on page 101.

Processor types available are Z80 and Z180/64180.

This dialog box also allows you to select whether the alternate register set is to be used in regular
functions. For this to be effective, global optimization must also be used. With this in effect, the compiler
will use the alternate register set for storing variables where appropriate. For more information, see -
ALTREG: Use Alternate Register Set on page 100.

You can also select whether you want 8-bit I/O port addressing as opposed to the default 16-bit I? port
addressing. See -P8: Use 8 bit port addressing on page 109 for more details.

CP/M-80 output file ...
You can select to output either a CP/M-80 .COM file or a library file.
80

HPDZ menus

 3
ROM output file ...
The default output file type is Intel HEX. The other choices are: Motorola S-Record HEX, Binary
Image, UBROF, Tektronix HEX, American Automation symbolic HEX, Intel OMF-51 and Bytecraft
.COD. This option will also allow you to specifiy that you want to create a library rather than an .EXE
file. A library can only be created from a project file.

ROM & RAM addresses ...
This option allows you to enter the addresses of the ROM and RAM in your target system. For standard
values refer to the instructions in the tutorial section on page 64.

The information entered into this dialog box is used by the linker to assign addresses to your code. Note
that some of the RAM addresses may be set to zero to allow HPDZ to set them automatically. The
addresses are used as follows:

ROM & RAM addresses

ROM and RAM addresses are applicable to both the small and the banked (large) memory models.

ROM address: This is the address in ROM where program code is to start. For virtually all Z80 systems
this will be address 0, the lowest ROM address available. If compiling code which is to be downloaded
into RAM using the LUCIFER debugger, this address will be the start of the downloadable RAM area.

Figure 3 - 8 Options Menu
HI-TECH C Z80 compiler 81

Using HPDZ

 3
The rom area starts with the reset vector, followed by any other interrupt vectors which have been
initialized using the interrupt vector handling macros defined in <intrpt.h>.

RAM address: This is the starting address of RAM. For Z180 systems this should be the address within
the first 64k that the RAM is to be mapped to (i.e. the RAM logical address).

RAM size: This is the size in bytes of RAM available, starting from the ram address.

NVRAM address: This is the address of a block of non-volatile RAM to be used for persistent variables.
If all RAM is non-volatile or persistent variables are not used, this value should be zero. This will cause
the non-volatile RAM area to be allocated from within the standard RAM area. The default value is zero.

For a Z80 system using small model, these four values (ROM address, RAM address, RAM size and
NVRAM address) will be the only ones required.

Physical addresses

Physical addresses are only applicable for the banked (large) memory model.

RAM address: is the physical (20 bit) address at which the RAM is actually located in a Z180 system.
To use the RAM it must be mapped down into the lower 64K of memory space. This value is required
for large model code, and for Z180 code unless the RAM is already addressed in the lower 64K.

Banked area address: is the start of the ROM which is to be mapped into the banked area

Banked area logical addresses

Banked area logical addresses are only applicable for the banked (large) memory model.

Banked area address: is the logical starting address of the banked area, within the lower 64K address
space. This and the next value, banksize, define a window in the bottom 64K which is mapped into ROM
at various physical addresses.

Banked area size: is the size of the banked area which is mapped into ROM at various physical
addresses.

In this dialog box, you can also choose whether initialised data is copied from ROM into RAM (default)
or remains in ROM.

Long formats in printf()
This option is used to tell the linker that you wish to use the long printf() support library. The long library
includes a version of printf() which supports the long output formats %1d, %1u and %1x. If you use this
option the compiled application will increase in size. You should only use this option if you want to use
long formats in printf(), it is not necessary if you merely want to perform long integer calculations. If
you select this option a marker appears beside the line in the menu.
82

HPDZ menus

 3
Float formats in printf()
This option is used to tell the linker that you wish to use the floating point printf() support library. The
float library includes a version of printf() which supports the floating point output formats %e, %f and
%g. If you use this option the compiled application will be larger. It is not required to perform floating
point calculations, so only use it if you wish to use floating point formats in printf().

Map and Symbol File Options ...
This dialog box allows you to set various options pertaining to debug information, the map file and the
symbol file.

Source level debug info
This menu item is used to enable or disable source level debug information in the current symbol file. If
you are using a HI-TECH Software debugger like LUCIFER, of an in-circuit emulator, you should
enable this option.

Sort map by address
By default, the symbol table in the in the link map will be sorted by name. This option will cause it to
be sorted numerically, based on the value of the symbol.

Suppress local symbols
Prevents the inclusion of all local symbols in the symbol file. Even if this option is not active, the linker
will filter irrelevant compiler generated symbols from the symbol file.

Avocet format symbol file
Use this option to select generation of an avocet AVSIM compatible symbol file.

3.5.5 Compile menu

The Compile menu, shown in Figure 3 - 9 on page 84, contains the various forms of the compile
command along with several machine independent compiler configuration options.

Compile and link F3
This command will compile a single source file and then invoke the linker and objtohex.exe to produce
an executable file. If the source file is an .AS file, it will be passed directly to the assembler. The output
file will have the same base name as the source file, but a different extension. For example HELLO.C
would be compiled to HELLO.EXE

Compile to .OBJ shift-F3
Compiles a single source file to a .OBJ file only. The linker and objtohex are not invoked. .AS files will
be passed directly to the assembler. The object file produced will have the same base name as the source
file and the extension .OBJ.
HI-TECH C Z80 compiler 83

Using HPDZ

 3
Compile to .AS ctrl-F3
This menu item compiles a single source file to assembly language, producing an assembler file with the
same base name as the source file and the extension .AS This option is handy if you want to examine or
modify the code generated by the compiler. If the current source file is an .AS file, nothing will happen.

Stop on Warnings
This toggle determines whether compilation will be halted when non-fatal errors are detected. A mark
appears against this item when it is active.

Warning level ... alt-W
This command calls up a dialog which allows you set the compiler warning level, i.e. it determines how
selective the compiler is about legal but dubious code. The range of currently implemented warning
levels is -9 to 9, where lower warning levels are stricter. At level 9 all warnings (but not errors) are
suppressed. Level 1 suppresses the "func() declared implicit int" message which is
common when compiling Unix derived code. Level 3 is suggested for compiling code written with less
strict (and K&R) compilers. Level 0 is the default. This command is equivalent to the -W option of the
ZC command.

Figure 3 - 9 HPDZ Compile Menu
84

HPDZ menus

 3
Optimization ... alt-Z
Selecting this item will open a dialog allowing you to select different kinds and levels of optimization.
The default is no optimization. Selections made in this dialog will be saved in the project file if one is
being used.

Identifier length...
By default C identifiers are considered significant only to 31 characters. This command will allow
setting the number of significant characters to be used, between 31 and 255.

Pre-process assembler files
Selecting this item will make HPDZ pass assembler files through the pre-processor before assembling.
This makes it possible to use C pre-processor macros and conditionals in assembler files. A mark
appears before the item when it is selected.

Generate assembler listing
This menu option tells the assembler to generate a listing file for each C or assembler source file which
is compiled. The name of the list file is determined from the name of the symbol file, for example
TEST.C will produce a listing file called TEST.LST.

Generate C source listings
Selecting this option will cause a C source listing for each C file compiled. The listing file will be named
in the same way as an assembler file (described above) but will contain the C source code with line
numbers, and with tabs expanded. The tab expansion setting is derived from the editor tab stop setting.

3.5.6 Make menu

The Make menu (Figure 3 - 10 on page 86) contains all of the commands required to use the HPDZ
project facility. The project facility allows creation of complex multiple source file applications with
ease, as well as a high degree of control of some internal compiler functions and utilities. To use the
project facility, it is necessary to follow several steps.

r Create a new project file using the New project ... command. After selecting the project file
name, HPDZ will present several dialogs to allow you to set up the memory model.

r Enter the list of source file names using the Source file list ... command.

r Set up any special libraries, pre-defined pre-processor symbols, object files or linker options
using the other items in the Make menu.

r Save the project file using the Save project command.

r Compile your project using the Make or Re-Make command.
HI-TECH C Z80 compiler 85

Using HPDZ

 3
Make F5
The Make command re-compiles the current project. When Make is selected, HPDZ re-compiles any
source files which have been modified since the last Make command was issued. HPDZ determines
whether a source file should be recompiled by testing the modification time and date on the source file
and corresponding object file. If the modification time and date on the source file is more recent than
that of the object file, it will be re-compiled.

If all .OBJ files are current but the output file cannot be found, HPDZ will re-link using the object files
already present. If all object files are current and the output file is present and up to date, HPDZ will
print a message in the message window indicating that nothing was done.

HPDZ will also automatically check dependencies, i.e. it will scan source files to determine what files
are included, and will include those files in the test to determine if a file needs to be recompiled. In other
words, if you modify a header file, any source files including that header file will be recompiled.

If you forget to use the source file list to select the files to be included, HPDZ will produce a dialog
warning that no files have been selected. You will then have to select the Done button or press escape.
This takes you back to the editor window.

Figure 3 - 10 HPDZ Make Menu
86

HPDZ menus

 3
Re-make ctrl-F5
The Re-make command forces recompilation of all source files in the current project. This command is
equivalent to deleting all .OBJ files and then selecting Make.

Re-link shift-F5
The Re-link command relinks the current project. Any .OBJ files which are missing or not up to date
will be regenerated.

Load project ... alt-P
This command loads a pre-defined project file. You are presented with a file selection dialog allowing
a .PRJ file to be selected and loaded. If this command is selected when the current project has been
modified but not saved, you will be given a chance to save the project or abort the Load project
command. After loading a project file, the message window title will be changed to display the project
file name.

New project ...
This command allows the user to start a new project. All current project information is cleared and all
items in the Make menu are enabled. The user will be given a chance to save any current project and will
then be prompted for the new project’s name.

Following entry of the new name HPDZ will present several dialogs to allow you to configure the
project. These dialogs will allow you to select: processor type, memory model and floating point type;
output file type; ROM and RAM addresses; optimization settings; and map and symbol file options. You
will still need to enter source file names in the Source file list.

Save project
This item saves the current project to a file.

Rename project...
This will allow you to specify a new name for the project. The next time the project is saved it will be
saved to the new file name. The existing project file will not be affected if it has already been saved.

Output file name ...
This command allows the user to select the name of the compiler output file. This name is automatically
setup when a project is created. For example if a project called PROG1 is created and an .EXE file is
being generated, the output file name will be automatically set to PROG1.EXE.

Map file name ...
This command allows the user to enable generation of a symbol map for the current project, and specify
the name of the map. If a mark character appears against this item, map file generation has been selected.
The default name of the map file is generated from the project name, e.g. PROG1.MAP
HI-TECH C Z80 compiler 87

Using HPDZ

 3
Symbol file name ...
This command allows you to select generation of a symbol file, and specification of the symbol file
name. The default name of the symbol file will be generated from the project name, e.g. PROG1.SYM.
The symbol file produced is suitable for use with any HI-TECH Software debugger.

Source file list ...
This option displays a dialog which allows a list of source files to be edited. The source files for the
project should be entered into the list, one per line. When finished, the source file list can be exited by
pressing escape, clicking the mouse on the DONE button, or clicking the mouse in the menu bar.

The source file list can contain any mix of C and assembly language source files. C source files should
have the suffix .C and assembly language files the suffix .AS, so that HPDZ can determine where the
files should be passed.

Object file list ...
This option allows any extra .OBJ files to be added to the project. Only enter one .OBJ file per line.
Operation of this dialog is the same as the source file list dialog. This list will normally only contain one
object file: the run-time start off module for the current code generation model. For example, if a project
is generating small model code for a Z80, by default this list will contain the small model runtime startoff
module rtz80-s.obj. Object files corresponding to files in the source file list SHOULD NOT be
entered here as .OBJ files generated from source files are automatically used. This list should only be
used for extra .OBJ files for which no source code is available, such as run-time startoff code or utility
functions brought in from an outside source.

If a large number of .OBJ files need to be linked in, they should be condensed into a single .LIB file
using the LIBR utility and then accessed using the Library file list ... command.

Library file list ...
This command allows any extra object code libraries to be searched when the project is linked. This list
normally only contains the default libraries for the memory model being used. For example, if the
current project is generating small model code for the Z80 and floating point printf in use, this list will
contain the libraries z80-sc.lib and z80-sf.lib. If an extra library, brought in from an external
source, is required, it should be entered here.

It is a good practice to enter any non-standard libraries before the standard C libraries, in case they
reference extra standard library routines. The normal order of libraries should be: user libraries, floating
point library, standard C library. The floating point library should be linked before the standard C library
if floating point is being used. Sometimes it is necessary to scan a user library more than once. In this
case you should enter the name of the library more than once.

CPP pre-defined symbols ...
This command allows any special pre-defined symbols to be defined. Each line in this list is equivalent
to a -D option to the command line compiler ZC. For example, if a CPP macro called DEBUG with value
88

HPDZ menus

 3

ds the
ld use
nd
1, needs to be defined, add the line DEBUG=1 to this list. Some standard symbols will be pre-defined
in this list, these should not be deleted as some of the standard header files rely on their presence.

CPP include paths ...
This option allows extra directories to be searched by the C pre-processor when looking for header files.
When a header file enclosed in angle brackets, for example <stdio.h> is included, the compiler will
search each directory in this list until it finds the file.

Linker options ...
This command allows the options passed to the linker by HPDZ to be modified. The default contents of
the linker command line are generated by the compiler from information selected in the Options menu:
memory model, etc. You should only use this command if you are sure you know what you are
doing!

Objtohex options ...
This command allows the options passed to objtohex by HPDZ to be modified. Normally you will not
need to change these options as the generation of binary files and HEX files can be chosen in the Options
menu. However, if you want to generate one of the unusual output formats which objtohex can produce,
like COFF files, you will need to change the options using this command.

3.5.7 Run menu

The Run menu shown in Figure 3 - 11 on page 90 contains options allowing MS-DOS commands and
user programs to be executed. It also contains the options to allow you to run code using the LUCIFER
debugger.

DOS command ... alt-D
This option allows a DOS command to be executed exactly like it had been entered at the
COMMAND.COM prompt. This command could be an internal DOS command like DIR, or the name
of a program to be executed. If you want to escape to the DOS command processor, use the DOS Shell
command below.

Warning: do not use this option to load TSR programs.

DOS Shell alt-J
This item will invoke a DOS COMMAND.COM shell, i.e. you will be immediately presented with a
DOS prompt, unlike the DOS command item which prompts for a command. To return to HPDZ, type
“exit” at the DOS prompt.

Download ...
This option runs the LUCIFER debugger, automatically downloads the current output file and loa
current symbol file. If the debugger has not been set up, this option will be unavailable. You shou
the Debugger setup ... command instead. LUCIFER can only download Motorola HEX, Intel HEX a
Binary type files. You should not attempt to download any other file types.
HI-TECH C Z80 compiler 89

Using HPDZ

 3
Debugger ...
This option runs the LUCIFER debugger with the current symbol file. This option does not download
user code, so can be used to return to a suspended LUCIFER session.

Debugger setup ...
This option activates a dialog box which allows you to select the serial port parameters for the LUCIFER
debugger. Once you have set up the parameters they are saved in the project file with the other settings.
The default settings for the Z80 version of LUCIFER are saved in the LUCZ80_ARGS environment
variable. For more information refer to Lucifer Source Level Debugger on page 197.

Auto download after compile
This option allows you to enable or disable automatic downloading of code after compiling. When it is
enabled and the LUCIFER debugger set up, at successful compilation HPDZ automatically invokes
LUCIFER to download the current output file and load the current symbol file. When it is enabled a
mark appears before the item

3.5.8 Utility menu

The Utility menu (Figure 3 - 12 on page 91) contains any useful utilities which have been included in
HPDZ.

Figure 3 - 11 HPDZ Run Menu
90

HPDZ menus

 3

ick on
 you to
String search ...
This option allows you to conduct a string search in a list of files. The option produces a dialog which
enables you to type in the string you are seeking and then select a list of files to search. You can also
select case sensitivity. It is possible to limit the search to a source file list or just the current project.

Memory usage map
This option displays a window which contains a detailed memory usage map of the last program which
was compiled.

The memory usage map window may be closed by clicking the mouse on the close box in the top left
corner of the frame, or by pressing Esc while the memory map is the front most window.

Calculator
This command selects the HI-TECH Software programmer’s calculator. This is a multi-display integer
calculator capable of performing calculations in bases 2 (binary), 8 (octal), 10 (decimal) and 16
(hexadecimal). The results of each calculation are displayed in all four bases simultaneously.

Operation is just like a “real” calculator - just press the buttons! If you have a mouse you can cl
the buttons on screen, or just use the keyboard. The large buttons to the right of the display allow
select which radix is used for numeric entry.

Figure 3 - 12 HPDZ Utility Menu
HI-TECH C Z80 compiler 91

Using HPDZ

 3
The calculator window can be moved at will, and thus can be left on screen while the editor is in use.
The calculator window may be closed by clicking the OFF button in the bottom right corner, by clicking
the close box in the top left corner of the frame, or by pressing Esc while the calculator is the front most
window.

Ascii Table
This option selects a window which contains an ASCII look up table. The ASCII table window contains
four buttons which allow you to close the window or select display of the table in octal, decimal or
hexadecimal.

The ASCII table window may be closed by clicking the CLOSE button in the bottom left corner, by
clicking the close box in the top left corner of the frame, or by pressing Esc while the ASCII table is the
front most window.

Define user commands...

In the Utility menu are four user-definable commands. This item will invoke a dialog box which will
allow you to define those commands. By default the commands are dimmed (not selectable) but will be
enabled when a command is defined. Each command is in the form of a DOS command, with macro
substitutions available. The macros available are listed in Table 3 - 9 on page 92. Each user-defined
command has a hot key associated. They are shift F7 through shift F10, for commands 1 to 4. When a
user command is executed, the current edit file, if changed, will be saved to a temporary file, and the
$(EDIT) macro will reflect the saved temp file name, rather than the original name. On return, if the
temp file has changed it will be reloaded into the editor. This allows an external editor to be readily
integrated into HPDZ.

Table 3 - 9 Macros usable in user commands

Macro name Meaning

$(LIB) Expands to the name of the system library file directory; eg C:\HPDZ\LIB\
$(CWD) The current working directory
$(INC) The name of the system include directory
$(EDIT) The name of the file currently loaded into the editor. If the current file has been

modified, this will be replaced by the name of the auto saved temporary file. On
return this will be reloaded if it has changed.

$(OUTFILE) The name of the current output file, i.e. the executable file.
$(PROJ) The base name of the current project, eg if the current project file is AUDIO.PRJ,

this macro will expand to AUDIO with no dot or file type.
92

HPDZ menus

 3
3.5.9 Help menu

The Help menu (Figure 3 - 13 on page 93) contains items allowing you to obtain help about any topics
listed.

On startup, HPDZ searches the current directory and the help directory for TBL files, which are added
to the Help menu. The path of the help directory can be specified by the environment variable
HT_xx_HLP. If this is not set, it will be derived from the full path name used when HPDZ was invoked.
If the help directory cannot be located, none of the standard help entries will be available.

HPDZ
This option produces a window showing all the topics for which help is available. These include
Checksum specifications, compiler optimizations, editor searching, memory models and chip types,
ROM and RAM addresses and string search.

C Library Reference
This command selects an on-line manual for the standard ANSI C library. You will be presented with a
window containing the index for the manual. Topics can be selected by double clicking the mouse on
them, or by moving the cursor with the arrow keys and pressing return.

Figure 3 - 13 HPDZ Help Menu
HI-TECH C Z80 compiler 93

Using HPDZ

 3
Once a topic has been selected, the contents of the window will change to an entry for that topic in a
separate window. You can move around within the reference using the keypad cursor keys and the index
can be re-entered using the INDEX button at the bottom of the window.

If you have a mouse, you can follow hypertext links by double clicking the mouse on any word. For
example, if you are in the printf entry and double click on the reference to fprintf, you will be taken to
the entry for fprintf.

This window can be re-sized and moved at will, and thus can be left on screen while the editor is in use.

Editor Keys
This option displays a list editor commands and the corresponding keys used to activate that command.

Technical Support
This option displays a list of dealers and their phone numbers for you to use should you require technical
support.

ZC Compiler Options
This option displays a window showing all the ZC compiler options. They are displayed in a table
showing the option and its meaning. You can scroll through the table using the normal scroll keys or the
mouse.

Z80/Z180 Instruction Set
This option displays a table of the entire instruction set for the Z80/Z180 processors.

Z180/64180 I/O Registers
This option displays a table of the I/O registers for the Z180 and 64180 processors.

Release notes
This option displays the release notes for your program. You can scroll through the window using the
normal scrolling keys or the mouse.
94

 4

files (C
 order

pe or
 that an

mbler
ll object
fied

ge is
bject

priate

s and
input

to get
ZC Command Line Compiler Driver

ZC is invoked from the DOS command line to compile and/or link C programs. If you prefer to use an
integrated environment then see the HPDZ chapter. ZC has the following basic command format:

ZC [options] files [libraries]

It is conventional to supply the options (identified by a leading dash ‘-’) before the filenames, but in
fact this is not essential. The options are discussed below. The files may be a mixture of source
or assembler) and object files. The order of the files is not important, except that it will affect the
in which code or data appears in memory. The libraries are a list of library names, or -L options (see
page 106). Source files, object files and library files are distinguished by ZC solely by the file ty
extension. Recognized file types are listed in Table 4 - 1 on page 95. This means, for example,
assembler file must always have a file type of .AS (alphabetic case is not important).

ZC will check each file argument and perform appropriate actions. C files will be compiled; asse
files will be assembled. At the end, unless suppressed by one of the options discussed later, a
files resulting from a compilation or assembly, or listed explicitly, will be linked with any speci
libraries. Functions in libraries will be linked only if referenced.

Invoking ZC with only object files as arguments (i.e. no source files) will mean only the link sta
performed. It is typical in Makefiles to use ZC with a -C option to compile several source files to o
files, then to create the final program, invoke ZC with only object files and libraries (and appro
options).

4.0.1 Long command lines

Since DOS has a command line limitation of 128 characters, to invoke ZC with a long list of option
files you may create a command file containing the ZC command line, and invoke ZC with its
redirected from that file. With no command line options specified, ZC will read its standard input
the argument list. For example a command file may contain:

Table 4 - 1 ZC file types

File Type Meaning

.C C source file

.AS Assembler source file

.OBJ Object code file

.LIB Object library file
HI-TECH C Z80 compiler 95

ZC Command Line Compiler Driver

 4
mory
d run-

bles
 Table
s which

opriate

de to
-v -O -Otest.hex -A0,8000,8000 -bl
file1.obj file2.obj mylib.lib

If this was in the file xyz.cmd then ZC would be invoked as:

ZC < xyz.cmd

Since no command line arguments were supplied, ZC will read xyz.cmd for its command line.

4.0.2 Default Libraries

ZC will search the standard C library by default. This will always be done last, after any user-specified
libraries. The particular library will be dependent on the memory model. The standard library contains
a version of printf that supports only int length values. If you want to print long values with printf, or
sprintf or related functions, you must specify a -LL option. This will search the “long” library. For
floating point printf support, use the -LF option.

4.0.3 Standard Run-Time Startoff

ZC will also automatically provide the standard run-time startoff module appropriate for the me
model. If you require any special powerup initialization, rather than replace or modify the standar
time startoff module, you should use the powerup routine feature (see page 145).

4.1 ZC Compiler Options

The compiler is configured primarily for generation of ROM code, but will optionally create executa
for the CP/M operating system (via the -CPM option). ZC recognizes the compiler options listed in
4 - 2 on page 97. The ZC command also allows access to a number of advanced compiler feature
are not available within the HPDZ integrated development environment.

4.1.1 -180: Generate Z180/64180 Code

This option selects code generation for the Z180/64180 processors, and specifies the appr
libraries for that processor.

4.1.2 -64180: Generate Z180/64180 Code

This option is the same as the -180 option.

4.1.3 -Aspec: Set ROM and RAM Addresses

The -A option is used to set the ROM and RAM addresses which will be used to link your co
absolute addresses. This option takes the following form for Z80 small model:

-Arom,ram,ramsize,nvram

and this form for other models and processors:
96

ZC Compiler Options

 4
Table 4 - 2 ZC options

Option Meaning

-180 Generate code for the Z180 processor
-64180 Generate code for the 64180 processor
-Aspec Specify memory addresses for linking
-AAHEX Generate an American Automation symbolic HEX file
-ALTREG Use alternate register set
-ASMLIST Generate assembler .LST file for each compilation
-AV Select AVOCET format symbol table
-AVSIM Same as -AV
-BIN Generate a Binary output file
-Bs Select small memory model
-Bl Select large memory model
-Bc Select CP/M memory model
-C Compile to object files only
-CLIST Generate C source listing file
-CPM Generate CP/M executable file
-CRfile Generate cross-reference listing
-Dmacro Define pre-processor macro
-E Use “editor” format for compiler errors
-Efile Redirect compiler errors to a file
-E+file Append errors to a file
-Gfile Generate source level symbol table
-Hfile Generate symbol table without line numbers etc.
-HELP Print summary of options
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-MOTOROLA Generate a Motorola S1/S9 HEX format output file
-Nlength Set identifier length to length (default is 31 characters)
-O Enable peephole optimization
-Ofile Specify output filename
-OF Optimize for speed
-OMF51 Produce an OMF-51 output file
HI-TECH C Z80 compiler 97

ZC Command Line Compiler Driver

 4
-Arom,ram,ramsize,ramphys,banklogi,banksize,bankphys,nvram

where:

rom is the address in ROM where program code is to start. For virtually all Z80 systems this will
be address 0, the lowest ROM address available. If compiling code which is to be downloaded
into RAM using the LUCIFER debugger, this address will be the start of the downloadable
RAM area. The rom area starts with the reset vector, followed by any other interrupt vectors
which have been initialized using the interrupt vector handling macros defined in <intrpt.h>.

ram is the starting address of RAM. For Z180 systems this should be the address within the first
64k that the RAM is to be mapped to (i.e. the RAM logical address).

ramsize is the size in bytes of RAM available, starting from the ram address.

ramphys is the physical (20 bit) address at which the RAM is actually located in a Z180 system. To use

-P Preprocess assembler files
-P8 Use 8 bit port addressing
-P16 Use 16 bit port addressing
-PROTO Generate function prototype information
-PSECTMAP Display complete memory segment usage after linking
-q Specify quiet mode
-ROMDATA Leave initialised data in ROM
-ROMranges Specify ROM ranges for code
-S Compile to assembler source files only
-SA Compile to Avocet AVMAC assembler source files
-STRICT Enable strict ANSI keyword conformance
-TEK Generate a Tektronix HEX format output file
-UBROF Generate an UBROF format output file
-UNSIGNED Make default character type unsigned
-Usymbol Undefine a predefined pre-processor symbol
-V Verbose: display compiler pass command lines
-Wlevel Set compiler warning level
-X Eliminate local symbols from symbol table
-Z180 Generate code for the Z180 processor
-Zg Enable global optimization in the code generator

Table 4 - 2 ZC options

Option Meaning
98

ZC Compiler Options

 4

ight

starting
 bytes
the RAM it must be mapped down into the lower 64K of memory space. This value is re-
quired for large model code, and for Z180 code unless the RAM is already addressed in the
lower 64K.

banklogi is the logical starting address of the banked area, within the lower 64K address space. This
and the next value, banksize, define a window in the bottom 64K which is mapped into ROM
at various physical addresses.

banksize is the size of the banked area which is mapped into ROM at various physical addresses.

bankphys is the start of the ROM which is to be mapped into the banked area

nvram is the address of a block of non-volatile RAM to be used for persistent variables. If all RAM
is non-volatile or persistent variables are not used, this value should be zero. This will cause
the non-volatile RAM area to be allocated from within the standard RAM area. The default
value is zero.

For a Z80 system using small model, only four values (rom, ram, ramsize and nvram) will be required.

Note that for the Z180 all the logical and physical addresses must be multiples of 1000 hex (4096
decimal) because the Z180 memory management is performed in 4096 byte pages.

All values taken by the -A option are hexadecimal (base 16) numbers, and should be specified without
a trailing “H”. Thus, the option

-A0,2000,2000

is correct, but the option:

-A0H,2000H,2000H

is not. Some examples of valid -A options follow:

A Z80 system with 32k ROM at 0H; and 32k RAM starting at 8000h would require:

-A0,8000,8000

A Z180 system with 128K of ROM starting at zero, and 32K of RAM starting at 40000 (256K) m
require the following option:

-A0,4000,8000,40000,1000,2000,4000

In this example the banked area runs from 1000 to 2FFF, and is mapped into physical memory
at 4000. Since there will be 1000 hex bytes of ROM still mapped at zero, this will leave 3000 hex
of ROM unused between this and the base of the banked ROM.
HI-TECH C Z80 compiler 99

ZC Command Line Compiler Driver

 4 that
r non-

ry code.

se
mat,
ymbol
4.1.4 -AAHEX: Generate American Automation Symbolic Hex

The -AAHEX option directs ZC to generate an American Automation symbolic format HEX file,
producing a file with the .HEX extension. This option has no effect if used with a .BIN file. The
American Automation hex format is an enhanced Motorola S-Record format which includes symbol
records at the start of the file. This option should be used if producing code which is to be debugged with
an American Automation in-circuit emulator.

4.1.5 -ALTREG: Use Alternate Register Set

This option allows the alternate register set to be used in regular functions. Note that use of fast interrupt
precludes the use of the alternate register set in any other way, but use in ordinary functions is compatible
with the existing use of the alternate register set in library functions.

I f a c o n f l i c t o c c u r s , t h e r e w i l l b e a l i n k - t i m e e r r o r s t a t i n g t h a t t h e sy m b o l
“Fast_interrupt_cant_be_used_with_long_or_float_or_altreg” is multiply defined. This indicates
fast interrupt functions have been declared, but the alternate register set is also being used fo
interrupt code.

For this to be effective, global optimization must also be used (via the -Zg option). With this in effect,
the compiler will use the alternate register set for storing variables where appropriate.

4.1.6 -ASMLIST: Generate Assembler .LST Files

The -ASMLIST option tells ZC to generate an assembler .LST file for each compilation. The list file
shows both the original C code, and the generated assembler code and the corresponding bina
The listing file will have the same name as the source file, and a file type (extension) of .LST.

This option is not compatible with the -CLIST option.

4.1.7 -AV: Select Avocet Symbol File

The -AV option is used in conjunction with the -H option to generate Avocet style symbol tables for u
with AVSIM simulators and certain in-circuit emulators. This option only sets the symbol table for
it does not tell the compiler to actually generate a symbol file. In order to generate an Avocet s
file you should use the -AV option with the -H option. For example:

ZC -AV -Htest.sym -A8000,8000 test.c

will generate an Avocet style symbol table called test.sym. The -AV option should not be used with
the ZC -G option as Avocet symbol tables make no provision for source level debug information.

4.1.8 -AVSIM: Select Avocet Symbol File

This is identical to the -AV option.
100

ZC Compiler Options

 4
4.1.9 -BIN: Generate Binary Output File

The -BIN option tells ZC to generate a Binary image output file. The output file will be given type
.BIN. Binary output may also be selected by specifying an output file of type .BIN using the -Ofile
option.

4.1.10 -Bs: Select Small Memory Model

The -Bs option is used to select code generation using the small memory model. The small model uses
a 64k address space. The libraries used with small model are listed in Table 4 - 3 on page 101.

4.1.11 -Bl: Select Large Memory Model

The -Bl option is used to select code generation using the large memory model, which uses bank
switching. The runtime startoff module and libraries associated with large model are listed in Table 4 -
4 on page 101.

Table 4 - 3 Small model libraries

Library Purpose

RTZ80-S.OBJ Small model run-time startoff
Z80-SC.LIB Small model standard C library
Z80-SL.LIB Small model printf library, long support
Z80-SF.LIB Small model printf library, long and float support
RTZ801S.OBJ Z180 Small model run-time startoff
Z801SC.LIB Z180 Small model standard C library
Z801SL.LIB Z180 Small model printf library, long support
Z801SF.LIB Z180 Small model printf library, long and float support

Table 4 - 4 Large model libraries

Library Purpose

RTZ80-L.OBJ Large model run-time startoff
Z80-LC.LIB Large model standard C library
Z80-LL.LIB Large model printf library, long support
Z80-LF.LIB Large model printf library, long and float support
RTZ801L.OBJ Z180 Large model run-time startoff
Z801LC.LIB Z180 Large model standard C library
Z801LL.LIB Z180 Large model printf library, long support
Z801LF.LIB Z180 Large model printf library, long and float support
HI-TECH C Z80 compiler 101

ZC Command Line Compiler Driver

 4

 the

r
ker is

ll be
 would
If large model is used with a Z180 processor, bank switching is handled by the Z180 MMU. If large
model is used with a processor other than the Z180, you have to write your own bank switching routines.
See Function Calling Conventions for Large Model on page 141 for more details.

4.1.12 -Bc: Select CP/M Memory Model

The -Bc option is used to select code generation using the CP/M memory model. The CP/M model
allows a 64k address space and uses the CP/M libraries. The runtime startoff module and libraries used
with medium model are listed inTable 4 - 5 on page 102. Note that the -CPM option is equivalent to the
-Bc option.

4.1.13 -C: Compile to Object File

The -C option is used to halt compilation after generating object files. This option is frequently used
when compiling multiple source files using a “make” utility. If multiple source files are specified to
compiler each will be compiled to a separate .OBJ file. To compile three source files main.c,
module1.c and asmcode.as to object files you could use the command:

ZC -O -Zg -C main.c module1.c asmcode.as

The compiler will produce three object files main.obj, module1.obj and asmcode.obj which
could then be linked to produce a Motorola HEX file using the command:

ZC -A0,8000,8000 main.obj module1.obj asmcode.obj

The compiler will accept any combination of .C, .AS and .OBJ files on the command line. Assemble
source files will be passed directly to the assembler and object files will not be used until the lin
invoked. Unless the -Ofile option is used to specify an output file name and type the final output wi
a Motorola hex file with the same “base name” as the first source or object file, the example above
produce a file called main.hex.

Table 4 - 5 CP/M model libraries

Library Purpose

RTZ80-C.OBJ CP/M model run-time startoff
Z80-CC.LIB CP/M model standard C library
Z80-CL.LIB CP/M model printf library, long support
Z80-CF.LIB CP/M model printf library, long and float support
RTZ801C.OBJ Z180 CP/M model run-time startoff
Z801CC.LIB Z180 CP/M model standard C library
Z801CL.LIB Z180 CP/M model printf library, long support
Z801CF.LIB Z180 CP/M model printf library, long and float support
102

ZC Compiler Options

 4 If a
ce
e
ple, to

d been

ives:
4.1.14 -CLIST: Produce C Listing File

This option will generate a listing file for each C source file, containing line numbers with tabs formatted
to spaces on 8 character stops. The listing file will be called file.LST where file is the base name of the
C source file.

This option is not compatible with the -ASMLIST option.

4.1.15 -CPM: Generate CP/M Executable File

The -CPM option is equivalent to the -Bc option, and selects CP/M code and output file format.

4.1.16 -CRfile: Generate Cross Reference Listing

The -CR option will produce a cross reference listing. If the file argument is omitted, the “raw” cross
reference information will be left in a temporary file, leaving the user to run the CREF utility.
filename is supplied, for example -CRtest.crf, ZC will invoke CREF to process the cross referen
information into the listing file, in this case TEST.CRF. If multiple source files are to be included in th
cross reference listing, all must be compiled and linked with the one ZC command. For exam
generate a cross reference listing which includes the source modules main.c, module1.c and
nvram.c, compile and link using the command:

ZC -CRmain.crf main.c module1.c nvram.c

4.1.17 -Dmacro: Define Macro

The -D option is used to define a pre-processor macro on the command line, exactly as if it ha
defined using a #define directive in the source code. This option may take one of two forms, -Dmacro
which is equivalent to:

#define macro 1

or -Dmacro=text which is equivalent to:

#define macro text

Thus, the command:

ZC -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the direct

#define debug 1

#define buffers 10
HI-TECH C Z80 compiler 103

ZC Command Line Compiler Driver

 4

le”
ine, for

le with
he

ond
 line. If
ill report

e been

. If the
mand

ing the
of the
4.1.18 -E: Use “editor” Format for Compiler Errors

The -E option instructs the compiler to generate error messages in a format which is acceptable to some
text editors. The default behaviour, if -E is not used, is to display compiler errors in a “human readab
format line with a caret and error message pointing out the offending characters in the source l
example:

x.c: main()

 4: PORT_A = xFF;

 ^ undefined identifier: xFF

The standard format is perfectly acceptable to a person reading the error output but is not usab
editors which support compiler error handling. If the same source code were compiled using t-E
option, the error output would be:

x.c 4 9: undefined identifier: xFF

indicating that the error occurred in file x.c at line 4, offset 9 characters into the statement. The sec
numeric value, the column number, is relative to the left-most non-space character on the source
an extra space or tab character were inserted at the start of the source line, the compiler would st
an error at line 4, column 9. Error output, either in standard or -E format, can be redirected into files
using UNIX or DOS style standard output redirection. The error from the example above could hav
redirected into a file called errlist using the command:

ZC -E x.c > errlist

Compiler errors can also be appended onto existing files using the redirect and append syntax
error file specified does not exist it will be created. To append compiler errors onto a file use a com
like:

ZC -E x.c >> errlist

4.1.19 -Efile: Redirect Compiler Errors to a File

Some editors do not allow the standard command line redirection facilities to be used when invok
compiler. To work with these editors, ZC allows the error listing file name to be specified as part
-E option. Error files generated using this option will always be in -E format. For example, to compile
x.c and redirect all errors to x.err, use the command:

ZC -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying a + at the start of the
error file name, for example:
104

ZC Compiler Options

 4

ce or

h

ource
ZC -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use the
-E option to create the file then use -E+ when compiling all the other source files. For example, to
compile a number of files with all errors combined into a file called project.err, you could use the
-E option as follows:

ZC -Eproject.err -O -Zg -C main.c

ZC -E+project.err -O -Zg -C part1.c

ZC -E+project.err -C asmcode.as

The file project.err will contain any errors from main.c, followed by the errors from part1.c
and then asmcode.as, for example:

main.c 11 22:) expected

main.c 63 0: ; expected

part1.c 5 0: type redeclared

part1.c 5 0: argument list conflicts with prototype

asmcode.as 14 0: Syntax error

asmcode.as 355 0: Undefined symbol _putint

4.1.20 -Gfile: Generate Source Level Symbol File

-G generates a source level symbol file for use with HI-TECH Software debuggers and simulators such
as Lucifer. If no filename is given, the symbol file will have the same “base name” as the first sour
object file, and an extension of .SYM. For example, -GTEST.SYM generates a symbol file called
TEST.SYM. Symbol files generated using the -G option include source level information for use wit
source level debuggers.

This option should not be used in conjunction with Avocet style symbol tables (ZC option -AV) as the
Avocet symbol table format makes no provision for source level debug information. Note that all s
files for which source level debugging is required should be compiled with the -G option, for example:

ZC -G -C test.c

ZC -C module1.c

ZC -A0,30,2000 -Gtest.sym test.obj module1.obj

will include source level debugging information for test.c only because module1.c was not
compiled with the -G option.
HI-TECH C Z80 compiler 105

ZC Command Line Compiler Driver

 4
4.1.21 -Hfile: Generate Assembler Level Symbol File

The -H option generates a symbol file without any source level information. HI-TECH Software
debuggers will only be able to perform assembler level debugging when using symbol files generated
using -H. Normally the symbol file generated using this option will be a HI-TECH Software format
symbol table, however if this option is used in conjunction with the ZC option -AV, an Avocet style
symbol table will be generated. Avocet symbol tables are used by certain in-circuit emulators.

4.1.22 -HELP: Display Help

The -HELP option displays information on the ZC options.

4.1.23 -Ipath: Include Search Path

Use -I to specify an additional directory to use when searching for header files which have been
included using the #include directive. The -I option can be used more than once if multiple
directories are to be searched. The default include directory containing all standard header files will still
be searched, after any user specified directories have been searched. For example:

ZC -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included
using angle brackets.

4.1.24 -Llibrary: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the -L option are scanned before the standard C library, allowing alternate versions of
standard library functions to be accessed. For example, if using the Z80 small memory model, the
floating point version of printf() can be linked in preference to the standard version by searching the
library z80-sf.lib using the option -Lf. The argument to -L is a library keyword to which the standard
library prefix and suffix .LIB are added. The library prefix depends on which processor and memory
model are being used. The standard library prefixes are shown in Figure 4 - 1 on page 107, where:
Processor Type is ‘z80-’ for the Z80 or ‘z801’ for the Z180; Model is ‘s’ for small, ‘l’ for large
and ‘c’ for CP/M; and the Library Type is ‘c’ for the standard library, ‘l’ for printf, supporting
longs, and‘f’ for printf supporting floats and longs. (The Library Type is what can be specified using
this option.)

All libraries must be located in the LIB subdirectory of the compiler installation directory. Libraries in
other directories can only be accessed using HPDZ or by invoking the linker directly. The complete set
of libraries and runtime startoff modules supplied with the compiler is listed in Table 4 - 3 to Table 4 - 5.
106

ZC Compiler Options

 4
linker
sed

o link
 by
hich

 the

her

 map

ith
4.1.25 -L-option: Specify Extra Linker Option

The -L option can also be used to specify an extra “-” option which will be passed directly to the
by ZC. If -L is followed immediately by any text starting with a “-” character, the text will be pas
directly to the linker without being interpreted by ZC. For example, if the option -L-FOO is specified,
the -FOO option will be passed on to the linker when it is invoked. The -L option is especially useful
when linking code which contains extra program sections (or psects, as may be the case if the program
contains assembler code or C code which makes use of the #pragma psect directive. If the -L
option did not exist, it would be necessary to invoke the linker manually or use an HPDZ option t
code which uses extra psects. The -L option makes it possible to specify any extra psects simply
using an extra linker -P option. To give a practical example, suppose your code contains variables w
have been mapped into a special RAM area using an extra psect called xram. In order to link this new
psect at the appropriate address all you need to do is pass an extra linker -P option using the -L option.
For example, if the special RAM area (xram psect) were to reside at address 2000h, you could use
ZC option -L-Pxram=2000h as follows:

ZC -Bl -L-Pxram=2000h -A0,4000,4000 prog.c xram.c

One commonly used linker option is -N, which sorts the symbol table in the map file in address rat
than name order. This is passed to ZC as -L-N.

4.1.26 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. If no filename is specified, the
information is displayed on the screen, otherwise the filename specified to -M will be used.

4.1.27 -MOTOROLA: Generate Motorola S-Record HEX File

The -MOTOROLA option directs ZC to generate a Motorola S-Record HEX file if producing a file w
.HEX extension. This option has no effect if used with a .BIN file.

Figure 4 - 1 Library Prefixes and Suffixes

.LIB

Library Type (c, f, l)

Model (s, l, c)
Processor Type (z80-, z801)

SuffixPrefix
HI-TECH C Z80 compiler 107

ZC Command Line Compiler Driver

 4
4.1.28 -Nlength: Specify Identifier Significant Length

By default identifiers are truncated at 31 characters, so that two identifiers that were the same in their
first 31 characters would be considered identical. This is consistent with the 31 character minimum
specified by the ANSI/ISO standard for C. Some applications may require identifiers to be distinguished
by more than 31 characters. This option sets the significant number of characters to length. It may not
be set outside the bounds 31-255. Use this option cautiously as use of identifiers longer than 31
characters will mean the code may not compile with other ANSI-conformant compilers.

4.1.29 -O: Invoke Optimizer

-O invokes the peephole optimizer after the code generation pass. Peephole optimization reduces the
code size by removing redundant jump and register load instructions.

4.1.30 -Ofile: Specify Output File

This option allows the name and type of the output file to be specified to the compiler. If no -O option
is specified, the output file will be named after the first source or object file. You can use the -O option
to specify an output file of type HEX, BIN or UBR, containing HEX, Binary or UBROF respectively.
For example:

ZC -Otest.bin -A0,4000,4000 prog1.c part2.c

will produce a binary file named TEST.BIN.

This option will have no effect on .obj or .as files produced by the compiler.

4.1.31 -OF: Optimize for Speed

This option optimizes the code generated by the compiler for speed.

4.1.32 -OMF51: Produce OMF-51 Output File

This option will make the compiler generate an output (executable code) file in Intel OMF-51 (strictly
speaking, AOMF-51) format. This format is used by some in-circuit emulators. It supports only a 64K
address space each for code and data.

This option is unlikely to be of any use for the Z80 processor family.

4.1.33 -P: Pre-process Assembly Files

-P causes the assembler files to pre-processed before they are assembled. This allows assembler files to
use #include, #if etc.
108

ZC Compiler Options

 4
4.1.34 -P8: Use 8 bit port addressing

Z80 systems that use 8 bit port addressing can benefit from use of the 8 bit direct addressed IN and OUT
instructions. This option enables the use of these instructions. The default is 16 bit port addressing. For
the Z180 this option is neither necessary nor desirable. The Z180 option automatically causes the
compiler to use IN0 and OUT0 instructions.

4.1.35 -P16: Use 16 bit port addressing

This is the default. See the -P8 option for more information.

4.1.36 -PRE: Produce Pre-processed Source Code

-PRE is used to generate pre-processed C source files with an extension .PRE. Use this option if sending
source code for technical support.

4.1.37 -PROTO: Generate Prototypes

-PROTO is used to generate .PRO files containing both ANSI and K&R style function declarations for
all functions within the specified source files. Each .PRO file produced will have the same base name
as the corresponding source file. Prototype files contain both ANSI C style prototypes and old style C
function declarations within conditional compilation blocks. The extern declarations from each .PRO
file should be edited into a global header file which is included in all the source files comprising a
project. .PRO files may also contain static declarations for functions which are local to a source file.
These static declarations should be edited into the start of the source file. To demonstrate the operation
of the -PROTO option, enter the following source code as file test.c:

#include <stdio.h>
int
add(arg1, arg2)
int * arg1;
int * arg2;
{
 return *arg1 + *arg2;
}

void
printlist(list, count)
int * list;
int count;
{
 while (count--)
HI-TECH C Z80 compiler 109

ZC Command Line Compiler Driver

 4
 printf("%d ", *list++);
 putchar(’\n’);
}

If compiled with the command ZC -PROTO test.c, ZC will produce test.pro containing the
following declarations which may then be edited as necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
 extern int add(int *, int *);
 extern void printlist(int *, int);
#else /* PROTOTYPES */
 extern int add();
 extern void printlist();
#endif /* PROTOTYPES */

4.1.38 -PSECTMAP: Display Complete Memory Usage

The -PSECTMAP option is used to display a complete memory and psect (program section) dump after
linking the user code. The information provided by this option is more detailed than the standard
memory usage map which is normally printed after linking. The -PSECTMAP option causes the
compiler to print a listing of every compiler and user generated psect, followed by the standard memory
usage map. For example:

Psect Usage Map:

Psect	Contents	Memory Range
lowtext | User defined psect | 0071H - 00F3H
vectors | Interrupt vectors | 0000H - 0070H
text | Program and library code | 00F4H - 0D25H
strings | Unnamed string constants | 0D26H - 0D89H
const | 'const' class data | 0D8AH - 0EADH
bss | Uninitialized RAM vars | 4000H - 4025H

Memory Usage Map:

User: 0071H - 00F3H 0083H (131) bytes
110

ZC Compiler Options

 4

uage
CODE: 0000H - 0070H 0071H (113) bytes
CODE: 00F4H - 0EADH 0DBAH (3514) bytes
RAM: 4000H - 4025H 0026H (38) bytes

4.1.39 -q: Quiet Mode

If used, this option must be the first option. It places the compiler in quite mode which suppresses the
HI-TECH Software copyright notice from being output.

4.1.40 -ROMDATA

By default the program is linked so that initialized data (i.e. any static or global variables or arrays that
are statically initialized but not qualified const) will be copied from ROM to RAM at start-up. This
allows the data to be modified at run-time in accordance with standard C practice.

It is often preferred, however, for initialized data to remain in ROM, thus saving RAM space. the -
ROMDATA option selects this alternative. Initialized data is then not modifiable at run-time. Constant
strings and const data are not affected by this option, and will always remain in ROM.

4.1.41 -ROMranges

Program code can be allocated into specific areas of the code memory space - the interrupt vectors and
some other code must be allocated at a fixed address, and the ROM address specified in the -A option
is always used for this. If a -ROM option is used, then rather than all other code being allocated upwards
from above the vectors, it will be allocated into the specified ranges. The syntax is identical to the -RAM
option, e.g.

-ROM0-2FFF,4000-5FFF

Note that it is not necessary to exclude areas used by the vectors from the ROM ranges, as the linker will
do so automatically.

4.1.42 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

ZC -O -Zg -S test.c

will produce an assembler source file called test.as which contains the code generated from
test.c. The optimization options -O and -Zg can be used with -S, making it possible to examine
the compiler output for any given set of options. This option is particularly useful for checking function
calling conventions and “signature” values when attempting to write external assembly lang
routines.
HI-TECH C Z80 compiler 111

ZC Command Line Compiler Driver

 4

f the
uld be
4.1.43 -SA: Compile to Avocet assembler source files

This option directs the compiler to compile the source to Avocet AVMAC assembler source files.

4.1.44 -STRICT: Strict ANSI Conformance

The -STRICT option is used to enable strict ANSI conformance of all special keywords. HI-TECH C
supports various special keywords (for example port for I/O port data types). If the -STRICT option is
used, these keywords are changed to include a double underscore at the beginning (e.g. __port) so as to
strictly conform to the ANSI standard. Be warned that use of this option may cause problems with some
standard header files (e.g. INTRPT.H).

4.1.45 -TEK: Generate Tektronix HEX File

The -TEK option tells the compiler to generate a Tektronix format HEX file if producing a file with
.HEX extension. This option has no effect if used with a .BIN file.

4.1.46 -Umacro: Undefine a Macro

-U, the inverse of the -D option, is used to undefine predefined macros. This option takes the form
-Dmacro. For example, to remove the pre-defined macro z80 use the option -Uz80.

4.1.47 -UBROF: Generate UBROF Format Output File

The -UBROF option tells the compiler to generate a UBROF format output file suitable for use with
certain in-circuit emulators. The output file will be given an extension .UBR. UBROF output may also
be selected by specifying an output file of type .UBR using the -O option. This option has no effect if
used with a .BIN file.

4.1.48 -UNSIGNED: Make char Type Unsigned

-UNSIGNED will make the default char type unsigned char. The default behaviour of the compiler is
to make all character values and variables signed char unless explicitly declared or cast to unsigned
char. If -UNSIGNED is used, the default character type becomes unsigned char and variables will need
to be explicitly declared signed char. The range of signed char is -128 to +127 and the range of unsigned
char is 0 to 255.

4.1.49 -V: Verbose Compile

-V is the “verbose” option. The compiler will display the command lines used to invoke each o
compiler passes. This option may be useful for determining the exact linker options which sho
used if you want to directly invoke the HLINK command.
112

ZC Compiler Options

 4

h

ts to

bols

 and

ult in
4.1.50 -Wlevel: Set Warning Level

-W is used to set the compiler warning level. Allowable warning levels range from -9 to 9. The warning
level determines how picky the compiler is about dubious type conversions and constructs. The default
warning level -W0 will allow all normal warning messages. Warning level -W1 will suppress the
message “Func() declared implicit int”. -W3 is recommended for compiling code originally written wit
other, less strict, compilers. -W9 will suppress all warning messages. Negative warning levels -W-1, -
W-2 and -W-3 enable special warning messages including compile-time checking of argumen
printf() against the format string specified.

4.1.51 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global sym
will remain in any object files or symbol files produced.

4.1.52 -Z180: Generate Z180 Code

This option is identical to the -180 option and selects code generation for the Z180 processor,
specifies the appropriate libraries for that processor.

4.1.53 -Zg: Global Optimization

The -Zg option invokes global optimization during the code generation pass. This can res
significant reductions to code size and RAM usage.
HI-TECH C Z80 compiler 113

ZC Command Line Compiler Driver

 4
114

 5

 in
 If no
as the
h ZC.
 source
d for

OF

can
Features and Runtime Environment

HI-TECH C supports a number of special features and extensions to the C language which are designed
to ease the task of producing ROM-based applications. This chapter documents the compiler options and
special features which are available. After reading and understanding this manual you should know how
to:

❒ compile your C and assembler source files using the ZC command.

❒ link your C application for specific addresses and create binary images, HEX files, UBROF
files or symbol files suitable for use with PROM programmers, debuggers, simulators and in-
circuit emulators.

❒ configure the console I/O routines so that you can use <stdio.h> routines on your hardware.

❒ set up interrupt vectors and interrupt handlers using only C code.

❒ program memory mapped I/O devices using only C code.

❒ interface between C and assembler code using inline or external assembly language routines.

❒ understand the three memory models used to execute C code on a Z80 and the restrictions which
are imposed on your C application.

5.1 Output File Formats

The compiler is able to directly produce a number of the output file formats which are used by common
PROM programmers and in-circuit emulators. If you are using the HPDZ integrated environment
compiler driver you can select Motorola Hex, Intel Hex, Binary, UBROF, Tektronix Hex, American
Automation symbolic Hex, Intel OMF-51 or Bytecraft .COD using the “Output file type” menu item
the “Options” menu. The default behaviour of the ZC command is to produce Intel HEX output.
output file name or type is specified, ZC will produce an Intel HEX file with the same base name
first source or object file. Table 5 - 1 on page 116 shows the output format options available wit
With any of the output format options, the base name of the output file will be the same as the first
or object file passed to ZC. The “File Type” column lists the filename extension which will be use
the output file.

In addition to the options shown, the -O option may be used to request generation of binary or UBR
files. If you use the -O option to specify an output file name with a .BIN type, for example -
Otest.bin, ZC will produce a binary file. Likewise, if you need to produce UBROF files, you
use the -O option to specify an output file with type .UBR, for example -Otest.ubr.
HI-TECH C Z80 compiler 115

Features and Runtime Environment

 5
Note that the Bytecraft code format is of limited use for the Z80.

5.2 Symbol Files

The ZC -G and -H options tell the compiler to produce a symbol file which can be used by debuggers
and simulators to perform symbolic and source level debugging. The -H option produces symbol files
which contain only assembler level information whereas the -G option also includes C source level
information. If no symbol file name is specified, by default a file called file.sym will be produced,
where file is the basename of the first source file on the command line. For example, to produce a symbol
file called test.sym which includes C source level information:

ZC -Gtest.sym test.c

The symbol files produced by these options may be used with in-circuit emulators, and also the Lucifer
debugger included with the compiler.

5.2.1 Avocet Symbol Tables

The ZC option -AV can be used in conjunction with the -H option to generate Avocet style symbol
tables for use with the AVSIM simulator and certain in-circuit emulators. -AV should not be used with
the -G option as the Avocet symbol table format does not support source level debugging information.

5.3 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional
compilation based on chip type, memory model etc. The symbols defined are listed in Table 5 - 2 on
page 117. Each symbol, if defined, is equated to 1.

Table 5 - 1 Output file formats

Format Name Description ZC Option File Type

Motorola HEX S1/S9 type hex file -MOTOROLA .HEX
Intel HEX Intel style hex records (default) .HEX
Binary Simple binary image -BIN .BIN
UBROF “Universal Binary Image Relocatable Format”-UBROF .UBR
Tektronix HEX Tektronix style hex records -TEK .HEX
American
Automation HEX

Hex format with symbols for American
Automation emulators

-AAHEX .HEX

OMF-51 Intel Absolute Object Module Format -OMF .OMF
Bytecraft .COD Bytecraft code format n/a .COD
116

Supported Data Types

 5

 +127
 255
r
aracter
es,

s,

ciently
 to

r

5.4 Supported Data Types

The ZC compiler supports basic data types of 1, 2 and 4 byte size. All multi-byte types follow least
significant byte first format, also known as little endian. Word size values thus have the least significant
byte at the lower address, and double word size values have the least significant byte and least significant
word at the lowest address.

5.4.1 8 Bit Integer Data Types

HI-TECH C supports both signed char and unsigned char 8 bit integral types. The default char type is
signed char unless the ZC -UNSIGNED option is used, in which case it is unsigned char. Signed char
is an 8 bit two’s complement signed integer type, representing integral values from -128 to
inclusive. Unsigned char is an 8 bit unsigned integer type, representing integral values from 0 to
inclusive. It is a common misconception that the C char types are intended purely for ASCII characte
manipulation. This is not true, indeed the C language makes no guarantee that the default ch
representation is even ASCII. The char types are simply the smallest of up to four possible integer siz
and behave in all respects like integers. The reason for the name char is historical and does not mean
that char can only be used to represent characters. It is possible to freely mix char values with short, int
and long in C expressions. On the Z80 the char types will commonly be used for a number of purpose
as 8 bit integers, as storage for ASCII characters, and for access to I/O locations. The unsigned char type
is the most efficient data type on the Z80 and maps directly onto the 8 bit bytes which are most effi
manipulated by Z80 instructions. It is suggested that char types be used wherever possible so as
maximize performance and minimize code size.

5.4.2 16 Bit Integer Data Types

HI-TECH C supports four 16 bit integer types. Int and short are 16 bit two’s complement signed intege
types, representing integral values from -32,768 to +32,767 inclusive. Unsigned int and unsigned short

Table 5 - 2 Predefined CPP symbols

Symbol Usage

HI_TECH_C Always set - can be used to indicate that the compiler in
use is HI-TECH C.

z80 Always set - can be used to indicate the code is compiled
for the z80 family. Note that this symbol is lower case.

SMALL_MODEL Set for small model
LARGE_MODEL Set for large memory model.
CPM Set for CP/M model
_HOSTED Set when running under an operating system, i.e. when

using the CP/M model
HI-TECH C Z80 compiler 117

Features and Runtime Environment

 5

e,

nteger
 at
e

er byte
 as 64).
ber is

ith the

 any
l include
are 16 bit unsigned integer types, representing integral values from 0 to 65,535 inclusive. 16 bit integer
values are represented in little endian format with the least significant byte at the lower address. Both
int and short are 16 bits wide as this is the smallest integer size allowed by the ANSI standard for C. 16
bit integers were chosen so as not to violate the ANSI standard. Allowing a smaller integer size, such as
8 bits would lead to a serious incompatibility with the C standard. 8 bit integers are already fully
supported by the char types and should be used in place of int wherever possible.

5.4.3 32 Bit Integer Data Types

HI-TECH C supports two 32 bit integer types. Long is a 32 bit two’s complement signed integer typ
representing integral values from -2,147,483,648 to +2,147,483,647 inclusive. Unsigned long is a 32 bit
unsigned integer type, representing integral values from 0 to 4,294,967,295 inclusive. 32 bit i
values are represented in little endian format with the least significant word and least significant byte
the lowest address. 32 bits are used for long and unsigned long as this is the smallest long integer siz
allowed by the ANSI standard for C.

5.4.4 Floating Point

Floating point is implemented using 32 bits, formatted as follows:

The byte containing the sign and the eight exponent bits is at the highest address. The high ord
consists of a sign bit (bit 7) and a 7 bit excess 64 exponent (i.e. an exponent value of 0 is stored
The remaining 3 bytes are a 24 bit mantissa, in twos complement form. The floating point num
always normalised.

Doubles are exactly the same as floats.

5.5 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration w
construct @ address, for example:

volatile unsigned charPortvar @ 0x1020;

will declare a variable called portvar located at 1020h. Note that the compiler does not reserve
storage, but merely equates the variable to that address, the compiler generated assembler wil
a line of the form:

_Portvar equ 1020h

Table 5 - 3 32-bit floating point format

31 30 24 23 0
Sign - 1 bit Exponent - 7 bits Mantissa - 24 bits
118

Port Type Qualifier

 5

riables

essor
d instruct

g

ss lines.

ou
Note that the compiler and linker do not make any checks for overlap of absolute variables with other
variables of any kind, so it is entirely the programmer’s responsibility to ensure that absolute va
are allocated only in memory not in use for other purposes.

This construct is primarily intended for equating the address of a C identifier with a microproc
register. To place a user-defined variable at an absolute address, define it in a separate psect an
the linker to place this psect at the required address. See 5.26.3 on page 151.

5.6 Port Type Qualifier

The Z80 I/O ports may be accessed directly via port type qualifier. For example, consider the followin
declaration:

port unsigned char * pptr;
port unsigned char io_port @ 0xE0;

The variable pptr is a pointer to an 8 bit wide port and the variable io_port is mapped directly onto
port 0E0H and will be accessed using the appropriate IN and OUT instructions. For example, the
statements

io_port |= 0x40;
*pptr = 0x10;

will generate the following code:

;z.c: 8: io_port |= 0x40;
IN A,(0E0H)
OR 40H
OUT (0E0H),A

;z.c: 9: *pptr = 0x10;
LD BC,(_pptr)
LD A,10H
OUT (C),A

The compiler allows I/O ports at addresses above 0FFh to be used. The ZC options -P8 and -P16
should be used to select generation of code for either 8 bit or 16 bit port addresses. -P8 would be used
on traditional Z80 systems where only 8 bits of the I/O address space are decoded. -P16 (which is the
default) should be used when generating code for Z80 systems which decode more than 8 addre
Use of the -P16 switch will force the IN A,(C) and OUT (C),A instructions to be used for all I/O
as the direct forms of the IN and OUT instructions should not be used with 16 bit port decoding. If y
are generating Z180 code (with the -180 switch to ZC), the compiler may also use the IN0 and OUT0
instructions where appropriate, and it is not necessary to use either -P16 or -P8 in conjunction with -
180.
HI-TECH C Z80 compiler 119

Features and Runtime Environment

 5
5.7 Structures and Unions

HI-TECH C supports struct and union types of any size from one byte upwards. Structures and unions
may be passed freely as function arguments and return values. Pointers to structures and unions are fully
supported.

5.7.1 Bit Fields in Structures

HI-TECH C fully supports bit fields in structures. Bit fields are allocated starting with the least
significant bit. Bit fields are allocated within 16 bit words, the first bit allocated will be the least
significant bit of the least significant byte of the word. Bit fields are always allocated in 16 bit units,
starting from the most significant bit. When a bit field is declared, it is allocated within the current 16
bit unit if it will fit, otherwise a new 16 bit word is allocated within the structure. Bit fields never cross
the boundary between 16 bit words, but may span the byte boundary within a given 16 bit allocation
unit. For example, the declaration:

struct {
 unsigned hi : 1;
 unsigned dummy : 14;
 unsigned lo : 1;
} foo @ 0x10;

will produce a structure occupying 2 bytes from address 10h. The field hi will be bit 0 of address 10h,
lo will be bit 7 of address 11h. The least significant bit of dummy will be bit 1 of address 10h and the
most significant bit of dummy will be bit 6 of address 11h. If a bit field is declared in a structure that is
assigned an absolute address, no storage will be allocated, and the fact that 16 bits are reserved is
unimportant, so to model a byte location with bit fields, you may simply define the bits as though only
one byte was occupied.

Unnamed bit fields may be declared to pad out unused space between active bits in control registers. For
example, if dummy is never used the structure above could have been declared as:

struct {
 unsigned hi : 1;
 unsigned : 14;
 unsigned lo : 1;
} foo @ 0x10;

5.8 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifiers const and volatile. The const type qualifier is
used to tell the compiler that an object has a constant value and will not be modified. If any attempt is
120

Special Type Qualifiers

 5
made to modify an object declared const, the compiler will issue a warning. User defined objects
declared const are placed in a special psect called const. For example:

const int version = 3;

The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain its
value between successive accesses. This prevents the optimizer from eliminating apparently redundant
references to objects declared volatile because it may alter the behaviour of the program to do so. All I/
O ports and any variables which may be modified by interrupt routines should be declared volatile, for
example:

volatile unsigned char TDR @ 0x1020;

5.9 Special Type Qualifiers

HI-TECH C supports special type qualifiers, persistent and code to allow the user to control placement
of static and extern class variables into particular address spaces. If the ZC -STRICT option is used,
these type qualifier are changed to __persistent and __code. These type qualifier may also be applied to
pointers. These type qualifier may not be used on variables of class auto; if used on variables local to a
function they must be combined with the static storage class specifier. You may not write:

void func(void)
{

persistent intintvar;
.. other code ..

}

because intvar is of class auto. To declare intvar as a persistent variable local to function test(), write:

static persistent int intvar;

5.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialized are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets or even power cycles (on-off-on). The persistent type qualifier
is used to qualify variables that should not be cleared on startup. In addition, any persistent variables
will be stored in a different area of memory to other variables, and this area of memory may be assigned
to a specific address (with the -A option to ZC, or in the HPDZ Options/ROM and RAM addresses
...). Thus if a small amount of non-volatile RAM is provided then persistent variables may be assigned
to that memory. On the other hand if all memory is non-volatile, you may choose to have persistent
variables allocated to addresses by the compiler along with other variables (but they will still not be
cleared). One advantage of assigning an explicit address for persistent variables is that this can remain
HI-TECH C Z80 compiler 121

Features and Runtime Environment

 5

“*” in
 to the

e

s
:

fixed even if you change the program, and other variables get allocated to different addresses. This
would allow configuration information etc. to be preserved across a firmware upgrade.

There are some library routines provided to check and initialize persistent data - see page 358 for more
information, and for an example of using persistent data.

5.9.2 Code Type Qualifier

The code type qualifier works with large model only and is used to place initialised static objects into a
ROM bank with associated code. The initialised static object will be located in the current ROM bank.
Objects declared to be code must be statically initialized, for example:

static code char sometext[] = “abcdef”;

will locate sometext[] in the current ROM bank. Obviously this will only be accessible to code
executing in this bank or in common code, so a pointer to code data should not be passed to any functions
outside the current bank, including library functions.

5.10 Pointers

HI-TECH C supports several different classes of pointer, of both 16 and 32 bit size. The default pointer
class is a 16 bit pointer which addresses a 64K address. The only 32 bit pointer is the pointer to a
function in large model.

5.10.1 Combining Type Qualifiers and Pointers

The const, volatile, persistent and code type qualifiers may also be applied to pointers, controlling the
behaviour of the object which the pointer addresses. When using these modifiers with pointer
declarations, care must be taken to avoid confusion as to whether the modifier applies to the pointer, or
the object addressed by the pointer. The rule is as follows: if the type qualifier is to the left of the
the pointer declaration, it applies to the object which the pointer addresses. If the type qualifier is
right of the “*”, it applies to the pointer variable itself. Using the volatile type qualifier to illustrate, the
declaration:

volatile char * nptr;

declares a pointer to a volatile character. The volatile type qualifier applies to the object which th
pointer addresses because it is to the left of the “*” in the pointer declaration.

The declaration:

char * volatile ptr;

behaves quite differently however. The volatile type qualifier is to the right of the “*” and thus applie
to the actual pointer variable ptr, not the object which the pointer addresses. Finally, the declaration
122

Pointers

 5
volatile char * volatile nnptr;

will generate a volatile pointer to a volatile variable.

5.10.2 Code Pointers

The code pointer works with large model only and is used to point to initialised static objects placed into
a ROM bank with associated code. The initialised static object will be located in the current ROM bank,
and will only be accessible to code executing in this bank or in common code. Therefore a pointer to
code data should not be passed to any functions outside the current bank, including library functions.

A common use of code constants and variables of class pointer to code is to access string constants such
as menus and prompts which have been placed in ROM. The following code illustrates this technique:

#include <conio.h>
static code charhello[] = "Hello, world\n";

static void
code_puts(code char * cptr)
{

char ch;
while (ch = *cptr++)

putch(ch);
}
main()
{

code_puts(hello);
}

Use of code constants and pointers can reduce RAM usage in the large memory model which, depending
on the compile-time -ROMDATA option, copies initialized variables to RAM.

5.10.3 Const Pointers

Pointers to const should be used when indirectly accessing objects which have been declared using the
const qualifier. Const pointers behave in nearly the same manner as the default pointer class in each
memory model, the only difference being that the compiler forbids attempts to write via a pointer to
const. Thus, given the declaration:

const char * cptr;

the statement:

ch = *cptr;
HI-TECH C Z80 compiler 123

Features and Runtime Environment

 5
is legal, but the statement:

*cptr = ch;

is not. Const pointers always access program ROM because const declared objects are stored in ROM.

5.11 Interrupt Handling in C

The compiler incorporates features allowing interrupts to be handled without writing any assembler
code. The function qualifier interrupt may be applied to a function to allow it to be called directly from
a hardware interrupt. The compiler will process interrupt functions differently to normal functions,
generating code to save and restore any registers used and exit using the RETI instruction instead of a
RET instruction at the end of the function. (If the ZC option -STRICT is used, the interrupt keyword
becomes __interrupt. Wherever this manual refers to the interrupt keyword, assume __interrupt if you
are using -STRICT.)

An interrupt function must be declared as type interrupt void and may not have parameters. It may not
be called directly from C code, but it may call other functions itself, subject to certain limitations. An
example of an interrupt function follows:

long tick_count;
void interrupt
tc_int(void)
{

++tick_count;
}

The manner of setting interrupt vectors depends on whether you are using mode 0, 1 or 2 interrupt
vectors. Note that the NMI is always handled as though it was a mode 0 or 1 interrupt, even if you are
using mode 2 for other interrupts.

5.11.1 Interrupt Handling Macros

The standard header file <intrpt.h> contains several macros and functions which are useful when
handling interrupts using C code. These are listed inTable 5 - 4 on page 125..

5.11.1.1 The ei() and di() Macros

The ei() and di() macros may be used to disable and enable maskable interrupts. It may be useful to
disable interrupts while initializing or servicing I/O devices. Di() disables interrupts by clearing the
interrupt enable flags using the DI instruction. Similarly, ei() enables interrupts by setting the interrupt
enable flags using the EI instruction.
124

Interrupt Handling in C

 5

d”
is array
.

5.11.1.2 The im() Macro

The im() macro is provided to select the interrupt mode. This macro will generate a line of assembler
code to select the appropriate interrupt mode. The I register will also be set for im(2). This should be
called in your main routine before enabling interrupts. The argument to im() is the interrupt mode
number, 0, 1 or 2.

For example:

im(2);

will select mode 2 interrupts.

5.11.1.3 The set_vector() Function

The set_vector() function allows an interrupt vector to be initialised. See the description of this function
in the Library Functions chapter.

5.11.1.4 ROM_VECTOR

The ROM_VECTOR, RAM_VECTOR, CHANGE_VECTOR, and READ_RAM_VECTOR macros may only
be used with mode 2 interrupts.

The ROM_VECTOR, RAM_VECTOR and CHANGE_VECTOR macros are used to set up a “hard-code
table of vectors in ROM, aligned on a 256 byte boundary. The high byte of the base address of th
is loaded into the I register at startup. The table is long enough to hold the highest vector defined

The macro ROM_VECTOR will statically initialise an entry in this table. It takes the form:

Table 5 - 4 Interrupt support macros and functions

Macro Name Description Example

ei Enable interrupts ei();
di Disable interrupts di();
im Select interrupt mode im(2);
set_vector Initialise an interrupt vector. set_vector(BRKINT, brkint_isr);
ROM_VECTOR Initialize interrupt vector in

ROM
ROM_VECTOR(IV_T0, handler);

RAM_VECTOR Initialize interrupt vector in
RAM

RAM_VECTOR(IV_T0, handler);

CHANGE_VECTOR Alter vector in RAM CHANGE_VECTOR(IV_T0,
handler);

READ_RAM_VECTOR Get current contents of
vector in RAM

iptr = READ_RAM_VECTOR(IV_T0);
HI-TECH C Z80 compiler 125

Features and Runtime Environment

 5

rent
-

mple:

alled
fined
ter

 to use

y
ns

hich
sing
ROM_VECTOR(vector, handler);

where vector is the vector offset (i.e. the 8 bit value that will be supplied by the interrupting device
in response to an interrupt acknowledge) and handler is the name of the function which will handle the
interrupt.

ROM_VECTOR generates in-line assembler code, so the vector argument may be in any format
acceptable to the assembler. Hexadecimal interrupt vector addresses may be passed either as C style hex
(0xA0) or as assembler style hex (A0h).

5.11.1.5 RAM_VECTOR

The RAM_VECTOR macro sets up a “soft” interrupt vector which can be modified to point to a diffe
interrupt handler if necessary. Note that for this to work, the data psect must be copied into RAM at run
time. If using RAM_VECTOR, the -ROMDATA compiler option must not be used, nor may the Initialised
data in RAM HPDZ option be deselected.

As with ROM_VECTOR, RAM_VECTOR statically initialises an entry in the table of vectors. RAM_VECTOR
takes the same arguments as ROM_VECTOR and can be used anywhere ROM_VECTOR is used.

5.11.1.6 CHANGE_VECTOR

The CHANGE_VECTOR macro is used to modify a vector which has been set up by RAM_VECTOR
macro. This is accomplished by modifying the interrupt handler address in internal RAM. For exa

di();
CHANGE_VECTOR(0xA0, new_handler);
ei();

will change the handler address used by vector 0xA0 to point to an interrupt function c
new_handler(). The address of the vector word in internal RAM is found by a special symbol de
by RAM_VECTOR, so CHANGE_VECTOR should only be used in the same module and af
RAM_VECTOR has been used. The vector address should be identical otherwise the symbols will not
match and a compile-time error will result.

If a vector has been modified and you want to change it back to the original value, you will need
CHANGE_VECTOR to change it back. Re-executing the code which contains the RAM_VECTOR macro
will not reset the vector because RAM_VECTOR statically initializes the vector without generating an
executable code. CHANGE_VECTOR is the only vector initialization macro which generates instructio
which are actually executed at run-time; ROM_VECTOR and RAM_VECTOR just force initial values into
the vectors.

5.11.1.7 READ_RAM_VECTOR

The READ_RAM_VECTOR macro may be used to read the value of a RAM based interrupt vector w
has been set up by RAM_VECTOR. It must never be used on vectors which have been initialized u
126

Interrupt Handling in C

 5
ROM_VECTOR as garbage will be returned. READ_RAM_VECTOR can be used along with
CHANGE_VECTOR to preserve an old interrupt handler address, set a new address and then restore the
original address. For example:

volatile unsigned char wait_flag;
interrupt void
wait_handler(void)
{
 ++wait_flag;
}
void
wait_for_serial_intr(void)
{
 interrupt void (*old_handler)(void);

 di();
 old_handler = READ_RAM_VECTOR(0xA0);
 wait_flag = 0;
 CHANGE_VECTOR(0xA0, wait_handler);
 ei();
 while (wait_flag == 0)
 continue;
 di();
 CHANGE_VECTOR(0xA0, old_handler);
 ei();
}

5.11.2 Interrupt Modes

Mode 0 interrupts are 8080 compatible, i.e. the interrupting device supplies a single instruction (usually
a JP or RST), while mode 1 interrupts always vector to address 0x38 (like a rst 38h instruction). Thus
both mode 0 and 1 interrupts (and the NMI) require a JP instruction, or other code, at the vector address.

Mode 2 interrupts, on the other hand, fetch a 2 byte address from a memory location in a 256 byte vector
page. The high byte of the vector page address is obtained from an internal CPU register, and the low
byte is supplied by the interrupting device. The 2 byte address fetched is loaded into the program
counter.

5.11.2.1 Setting the Interrupt Mode

The im() macro will generate a line of assembler code to select the appropriate interrupt mode. This
should be called in your main routine before enabling interrupts.
HI-TECH C Z80 compiler 127

Features and Runtime Environment

 5
5.11.2.2 Interrupt Mode 0 and Mode 1

The set_vector() library routine is suitable for use with mode 0 or 1 interrupts, and should always be
used for the NMI, which always vectors to location 0x66. Set_vector() depends on the runtime startoff
code having set up JP instructions at the vector locations. If you want to directly vector base page
interrupts to your interrupt service routines, you can modify the runtime startoff code to directly encode
JP instructions which point to your code. The interrupt vectors are set up by the code sequence shown
below (from the standard run-time startoff module RTZ80-S.AS). The run-time startoff modules for
bankswitched code and the Z180 are similar.

psect vectors

globalstart,_main,_exit,__Hstack,__Hbss, __Lbss
globalpowerup, __Ldata, __Hdata, __Lconst

defb 0c3h ; JP opcode
defw init ; cannot be optimized by ZAS -J option
defb 0,0
jp bdosvec; jump to BDOS handler
jp r08vec; jump to RST 08 handler
defb 0,0,0,0,0
jp r10vec; jump to RST 10 handler
defb 0,0,0,0,0
jp r18vec; jump to RST 18 handler
defb 0,0,0,0,0
jp r20vec; jump to RST 20 handler
defb 0,0,0,0,0
jp r28vec; jump to RST 28 handler
defb 0
jp r2Cvec; jump to RST 0C handler (NSC800)
defb 0
jp r30vec; jump to RST 30 handler
defb 0
jp r34vec; jump to RST 0B handler (NSC800)
defb 0
jp r38vec; jump to RST 38 handler
defb 0
jp r3Cvec; jump to RST 0A handler (NSC800)
defb 0,0
defm "Copyright (C) 1993 HI-TECH Software"
128

Interrupt Handling in C

 5
defb 0,0
jp nmivec ; jump to NMI handler

;
fakesp:

defw start
init:

ld sp,fakesp
jp powerup

The code sequence shown above is linked at address 0 in ROM and redirects all basepage interrupts to
a table of JP instructions which are placed in RAM by the runtime startoff code. The set_vector() routine
follows the JP instruction in the basepage and modifies the RAM based JP instruction to point to the
specified routine. For example, the call

set_vector((isr *)0x38, handleint)

will place a JP to handleint() at the RAM location pointed to by the RST 38 vector, i.e. r38vec.

This technique makes it possible to dynamically modify interrupt vectors while your code is running.
Many ROM applications require only a small number of fixed interrupt vectors. In this case, it may be
desirable to edit the run-time startoff module and hard code the basepage vectors to point directly at the
interrupt routines. For example, the RST 38 vector could be hard coded to point at handleint() by
changing it to:

GLOBAL _handleint
JP _handleint ;38- RST 38 handler

5.11.2.3 Interrupt Mode 2

Interrupt mode 2 is handled with the macros ROM_VECTOR, RAM_VECTOR, CHANGE_VECTOR, and
READ_RAM_VECTOR as defined in the standard header file <intrpt.h>.

An example using mode 2 interrupts is shown in figure 10.

#include <z180.h>
#include <intrpt.h>
#include <stdio.h>

#define CLOCK 6144000 /* clock frequency in Hz */
#define TICKS 50 /* ticks per second */
#define COUNT ((CLOCK/20)/TICKS)/* timer counts per tick */
#define BRATE 0x01 /* 19200 baud @ 6.144Mhz */
HI-TECH C Z80 compiler 129

Features and Runtime Environment

 5
static unsigned time;
static unsigned char ticks, flag;

static void interrupt
timer_int(void)
{

if(++ticks == TICKS) {
ticks = 0;
time++;
flag = 1;

}
TCR; /* read TCR to clear flag */
TMDR0L; /* and timer reg */

}

void
putch(char c)
{

if(c == ’\n’) {
while (!(STAT0 & 2))

continue;
TDR0 = ’\r’;

}
while (!(STAT0 & 2)) /* wait for TDRE == 1 */

continue;
TDR0 = c; /* write character */

}

main(void)
{

/* set up interrupt vector */
ROM_VECTOR(PRT0_VEC, timer_int);
im(2); /* set interrupt mode */
STAT0 = 0; /* reset ASCI channel 1 */
CNTLA0 = 0x64; /* Enable UART */
CNTLB0 = BRATE; /* baud rate */
RLDR0L = COUNT; /* set up timer */
RLDR0H = COUNT >> 8;
130

Interrupt Handling in C

 5
TCR = 0x11; /* start timer, enable interrupt */
ei();
for(;;) {

while(!flag) /* wait a second! */
continue;

flag = 0;
printf("%6d\n", time); /* print the time */

}
}

5.11.3 Predefined Interrupt Vector Names

The header file z180.h includes declarations for all of the standard interrupt vectors for Z180 internal
interrupts. These vector names may be used as the vector address argument to the ROM_VECTOR,
set_vector(), RAM_VECTOR, CHANGE_VECTOR and READ_RAM_VECTOR macros.

The interrupt vectors defined in z180.h are listed in Table 5 - 5 on page 131. Interrupt vectors other
than those in z180.h may be declared using pre-processor #define directives, or the vector address
may be directly used with the vector macros.

5.11.4 Handling Non Maskable Interrupts

The nmi function qualifier may be used to declare a function which handles the Z80 non-maskable
interrupt. A function declared nmi interrupt will exit via a retn instruction instead of reti. Nmi interrupt

Table 5 - 5 Z180 interrupt vectors

Name Value Use

INT1_VEC 0x00 External /INT1
INT2_VEC 0x02 External /INT2
INTCAP_VEC 0x12 Input capture
OUTCMP_VEC 0x14 Output compare
TIMOV_VEC 0x16 Timer Overflow
PRT0_VEC 0x04 PRT Channel 0
PRT1_VEC 0x06 PRT Channel 1
DMA0_VEC 0x08 DMA Channel 0
DMA1_VEC 0x0A DMA Channel 1
CSIO_VEC 0x0C Clocked serial I/O
ASCI0_VEC 0x0E Async channel 0
ASCI1_VEC 0x10 Async channel 1
HI-TECH C Z80 compiler 131

Features and Runtime Environment

 5
functions should only be vectored from the NMI vector at 66h as it is not safe practice to terminate a
normal interrupt with retn, or an NMI with reti, due to the way the interrupt enable flip flops are handled
on the Z80.

5.11.5 Fast Interrupts

A function declared fast interrupt will preserve the general purpose registers by switching register banks
using the EXX and EX AF,AF’ instructions. Fast interrupt functions may not be used in programs which
make use of the floating point or long (32 bit) arithmetic facilities in the C library as some of the library
routines used by floating point code make use of the alternate register set. There is a link time check
against this condition; the linker will fail with an appropriate error message if you attempt to use fast
interrupts and floating point in the same program. Fast interrupt functions must never be nested;
interrupts should be kept disabled for the duration of the function.

5.12 Mixing C and Z80 Assembler Code

Z80 assembly language code can be mixed with C code using three different techniques.

5.12.1 External Assembly Language Functions

Entire functions may be coded in assembly language, assembled by ZAS as separate .AS source files and
combined into the binary image using the linker. This technique allows arguments and return values to
be passed between C and assembler code. To access an external function, first include an appropriate C
extern declaration in the calling C code. For example, suppose you need an assembly language function
to provide access to the rotate left instruction on the Z80:

extern char rotate_left(char);

declares an external function called rotate_left() which has a return value type of char and takes a single
argument of type char. The actual code for rotate_left() will be supplied by an external .AS file which
will be separately assembled with ZAS. The full Z80 assembler code for rotate_left() would be
something like:

GLOBAL _rotate_left
SIGNAT _rotate_left,4153
PSECT text

_rotate_left:
RLC E
LD L,E
RET

The name of the assembly language function is the name declared in C, with an underscore prepended.
The GLOBAL pseudo-op is the assembler equivalent to the C extern keyword and the SIGNAT pseudo-
op is used to enforce link time calling convention checking. Signature checking and the SIGNAT pseudo-
132

Mixing C and Z80 Assembler Code

 5
op are discussed in more detail later in this chapter. Note that in order for assembly language functions
to work properly they must look in the right place for any arguments passed and must correctly set up
any return values. Local variable allocation, argument and return value passing mechanisms are
discussed in detail later in the manual and should be understood before attempting to write assembly
language routines.

5.12.2 #asm, #endasm and asm()

Z80 instructions may also be directly embedded in C code using the directives #asm, #endasm and
asm(). The #asm and #endasm directives are used to start and end a block of assembler instructions
which are to be embedded inside C code. The asm() directive is used to embed a single assembler
instruction in the code generated by the C compiler. To continue our example from above, you could
directly code a rotate left on a memory byte using either technique as the following example shows:

#include <stdio.h>
unsigned char var;
main()
{
 var = 1;
 printf("var = 0x%2.2X\n", var);
#asm
 LD A,(_var)
 RLC A
 LD (_var),A
#endasm
 printf("var = 0x%2.2X\n", var);
 asm("LD A,(_var)");
 asm("RLC A");
 asm("LD (_var),A");
 printf("var = 0x%2.2X\n", var);
}

When using inline assembler code, great care must be taken to avoid interacting with compiler generated
code. If in doubt, compile your program with the ZC -S option and examine the assembler code
generated by the compiler.

IMPORTANT NOTE: the #asm and #endasm construct is not syntactically part of the C program, and
thus it does not obey normal C flow-of-control rules. For example, you cannot use a #asm block with an
if statement and expect it to work correctly. If you use in-line assembler around any C constructs such
as if, while, do etc. they you should use only the asm("") form, which is a C statement and will correctly
interact with all C flow-of-control structures.
HI-TECH C Z80 compiler 133

Features and Runtime Environment

 5

other
 code

 one

with the
nction

ing the

ld

de for
 To

rrect
5.13 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16 bit value computed
from a combination of the function’s return data type, the number of its parameters and
information affecting the calling sequence for the function. This signature is output in the object
of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. Thus if a function is declared in
module in a different way (for example, as char instead of short) then the linker will report an error.

It is sometimes necessary to write assembly language routines which are called from C using anextern
declaration. Such assembly language functions need to include a signature which is compatible
C prototype used to call them. The simplest method of determining the correct signature for a fu
is to write a dummy C function with the same prototype and compile it to assembly language us
ZC -S option. For example, suppose you have an assembly language routine called _widget which
takes two int arguments and returns a char value. The prototype used to call this function from C wou
be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int arguments and
a char return value would be generated. In order to match the correct signature the source co
widget needs to contain an ZAS SIGNAT pseudo-op which defines the same signature value.
determine the correct value, you would write the following code:

char widget(int arg1, int arg2)
{
}

and compile it to assembler code using

ZC -S x.c

The resultant assembler code includes the following line:

signat _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the .OBJ file which associates the value
8249 with symbol _widget. The value 8249 is the correct signature for a function with two int
arguments and a char return value. If this line is copied into the .AS file where _widget is defined, it
will associate the correct signature with the function and the linker will be able to check for co
argument passing. For example, if another .C file contains the declaration:

extern char widget(long);
134

Linking Programs

 5
A different signature will be generated and the linker will report a signature mismatch which will alert
you to the possible existence of incompatible calling conventions.

5.14 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (ZC -S option) or object code (ZC -C option). To specify your RAM address (for variables and
stack) and your ROM address (for code and initialized constants), use the ZC -A option. If the -A option
is not used the compiler will ask for the appropriate ROM and RAM addresses and sizes.

ZC and HPDZ by default generate Intel hex files. If you use the -BIN option or specify an output file
with a .BIN filetype using the ZC -O option the compiler will generate a binary image instead. The file
will contain code starting from the lowest initialized address in the program. For example:

ZC -v -oxx.bin -A0,8000,8000

will produce a binary file starting with the vectors, followed by user code, initialized data and library
code. After linking, the compiler will automatically generate a memory usage map which shows the
address and size of all memory areas which are used by the compiled code. For example:

Memory Usage Map:
User: 0069H - 00F2H 008AH (138) bytes
 ROM: 0000H - 0068H 0069H (105) bytes
 ROM: 00F3H - 0DC2H 0CD0H (3280) bytes
 RAM: FE00H - FEC6H 00C7H (199) bytes

More detailed memory usage information, listed in ascending order of individual psects, may be
obtained by using the ZC -PSECTMAP option.

5.15 Memory Usage

The compiler makes few assumptions about memory. With the exception of variables declared using the
@address construct, absolute addresses are not allocated until link time.

5.16 Register Usage

The IX register is used as a stack frame pointer, while IY may be used as a register variable. Register
DE and BC are used for register based function argument passing. Registers HL and DE are used for
function return values. These registers should be preserved by any assembly language routines which
are called.
HI-TECH C Z80 compiler 135

Features and Runtime Environment

 5
5.17 Stack Frame Organisation

On entry to _main and all other C functions, some code is executed to set up the local stack frame. This
involves saving non-temporary registers (IX and IY for the Z80) and setting up the base pointer (IX) to
point to the base of the new stack frame. IX and IY are saved only if the function uses them. Then the
stack pointer is adjusted to allow the necessary space for local variables. Typical code on entry to a
function would be:

PUSH IX
LD IX,0
ADD IX,SP
LD HL,-10
ADD HL,SP
LD SP,HL
PUSH IY

This will allocate 10 bytes of stack space for local variables. The stack frame after this code will look
like that shown in Figure 5 - 1.

Figure 5 - 1 Stack Frame after Function Entry

Arguments

Return

Saved IX

Stack grows down toward

IX points here

lower memory addresses

Saved IY

Local

SP points here

Address

Variables
136

Function Argument Passing

 5
All references to the local data or parameters are made via IX. The first argument is located at (IX+4).
Note that if IX is not used (i.e. there are no stack based arguments or local variables accessed in the
function) then IX will not be saved. Similarly IY will be saved only if it is used as a register variable.

A parameter may occupy any number of bytes, depending on its type. If a char is passed as an argument
to a non-prototyped (i.e. K&R style) function, it is expanded to int length. Where a function is
prototyped, a char argument will occupy only one byte, but two bytes will be allocated for it on the stack.

Local variables are accessed at locations (IX-1) downwards. IY may be used as a register variable. If
global optimization is used, other registers may also be used as register variables, but are not saved since
they are regarded as temporary registers across function calls.

Exit from the function is accomplished by reversing the entry code. This restores the old IX and IY,
resets the stack pointer to point to the return address, pops the return address into a register, removes the
stack based arguments, and jumps to the saved return address. Example exit code for a function with 4
bytes of stack arguments follows:

POP IY
LD SP,IX
POP IX
POP BC
POP AF
POP AF
PUSH BC
RET

The code above saves the return address in the BC register temporarily, removes the 4 bytes of stack
arguments by popping them into AF, then returns by pushing the return address onto the stack and
executing the a RET instruction. Note that non-prototyped functions, and functions with variable
argument lists, leave the stack argument removal to the calling function.

5.18 Function Argument Passing

Some function arguments are passed in the DE and BC registers. This occurs if the function in question
has an ANSI-style prototype and either of the first two arguments are words or bytes, and the second
argument is not the ellipsis symbol (...). In this case the first argument will be placed in DE (for a word)
or E (for a byte) and the second argument will be placed in BC or C.

Depending on the function, register based parameters may or may not be stored on the stack at some
stage during execution of the function. This feature has nothing to do with a register declaration of a
parameter. Any arguments passed on the stack will be pushed in strict right to left order. The left most
argument will occupy the lowest memory address on the stack.
HI-TECH C Z80 compiler 137

Features and Runtime Environment

 5
For example, take the following ANSI-style function:

void
test(int a, int b, int c)
{
}

Test() will receive argument a in the DE register, argument b in the BC register and argument c on the
stack. The call test(1,2,3) would generate the following code:

LD HL,3
PUSH HL
LD DE,1
LD BC,2
CALL _test

Note that the test removes its own arguments from the stack, thus it is not necessary for the caller to
remove argument c from the stack.

For functions declared with an ANSI-style prototype, the responsibility for removing the arguments from
the stack lies with the function called, not the caller. For example, a function with 10 bytes of stack
arguments would exit with code similar to the following:

POP BC ;BC = return address
LD HL,10
ADD HL,SP ;adjust SP by
LD SP,HL ;10 bytes
PUSH BC ;ret addr -> stack
RET

Functions declared with K&R-style argument lists do not use register arguments and leave stack
unjunking to the caller. Functions which return long or float values and use more than 16 bytes of stack
arguments will also leave stack unjunking to the caller. A K&R-style function (that is, a function with
old-style C arguments) will clear any local variables from the stack and exit using a RET instruction,
leaving it to the caller to clear the arguments from the stack. For example, take the old style function:

void test(a,b,c)
int a,b,c;
{
}

138

Function Return Values

 5
Test() will receive arguments a, b and c on the stack, pushed in right to left order with a at the lowest
address. The stack arguments will be removed from the stack by the calling function. For example, the
call test(1,2,3) would generate the following code:

LD HL,3
PUSH HL
LD HL,2
PUSH HL
LD HL,1
PUSH HL
CALL _test
POP BC
POP BC
POP BC

These rules should be kept in mind when writing assembly language routines which are called by C
code. It is often helpful to write a dummy C function with the same argument types as your assembler
function, and compile to assembler code with the ZC -S option, allowing you to examine the entry and
exit code generated. In the same manner, it is useful to examine the code generated by a call to a function
with the same argument list as your assembler function.

5.19 Function Return Values

Function return values are passed to the calling function as follows:

5.19.1 8 Bit Return Values

8 bit values (char, unsigned char) are returned in the L register. 8 bit return values are not sign extended
into the HL register pair. For example, the statement:

ch = char_func()

where char func() returns a character will generate code as follows:

CALL _char_func
LD A,L
LD (_ch),A

5.19.2 16 Bit Return Values

16 bit values (int, unsigned int, short, unsigned short and pointer) are returned in the HL register pair,
with the least significant byte in the L register. For example, the statement:

i = int_func()
HI-TECH C Z80 compiler 139

Features and Runtime Environment

 5
where int func() returns an integer will generate this code:

CALL _int_func
LD (_i),HL

5.19.3 32 Bit Return Values

32 bit values (long, unsigned long, float and double) are returned in register pairs DE and HL. The least
significant word is in the DE register pair. The statement:

l = long_func()

where long func() returns a 32 bit quantity will generate:

CALL _long_func
LD (_l),DE
LD (_l+2),HL

5.19.4 Structure Return Values

Composite return values (struct and union) are returned by copying the return value to a static buffer in
the bss psect and returning a pointer to the buffer in the HL register pair. The structure pointer returned
in HL is then used either to reference members of the structure or copy the return value to an lvalue.
Consider the following C code:

struct tst {
int i, j, k;

};
extern struct tst test(void);
int i;
struct tst s;
main()
{

s = test();
i = test().j;

}

The compiler will generate the following code for the two assignments.

;z.c: 12: s = test();
CALL _test
LD DE,_s
LD BC,6
LDIR
140

Function Calling Conventions for Large Model

 5
model
 bank
call is
ing to

ade to
utines

 stack
;z.c: 13: i = test().j;
CALL _test
INC HL
INC HL
LD C,(HL)
INC HL
LD B,(HL)
LD (_i),BC

In the first case, the entire structure is being assigned to another variable so the return pointer in HL is
used as the source pointer for a block move to the lvalue. In the second case only one member of the
return value is referenced so the return pointer is used to access the .j field without making a local
copy of the structure.

When using structure return values you should take into account the extra bss psect space allocated for
the “hidden” copy of the return value. In the case above, the code generated for function test() will
include a declaration of a 6 byte buffer used to set up the return value.

5.20 Function Calling Conventions for Large Model

When using the large (bankswitched) model, the calling conventions are similar to the small
except for the actual call. Rather than calling the function directly, register A is loaded with the
number of the function to be called, HL is loaded with its address within that bank, and then a
made to a routine in common memory which performs the necessary bank switching before jump
the function. The current bank is saved on the stack.

On return from the function, the old bank number is retrieved from the stack before a return is m
the calling function. The code to do this on a Z80 is shown following. Note that there are two ro
to return; one that removes arguments from the stack (lretp) and one that does not (lret).

When a function is called in this manner, the compiler accounts for the additional word on the
when calculating argument offsets.

globallcall, lret, lretp, __Lbasecode
psect lowtext,class=CODE

BBR equ 39h ;Bank base register

; lcall - perform a far call

lcall:ex af,af’ ;save new bank number
HI-TECH C Z80 compiler 141

Features and Runtime Environment

 5
in0 a,(BBR) ;get current bank
push af ;save it
ex af,af’ ;restore new bank
sub __Lbasecode/1000h;adjust bank number
out0 (BBR),a
jp (HL) ;go to new routine

lret: pop af ;restore bank number
out0 (BBR),a ;select it
ret ;back to caller

lretp:push bc ;get adjustment
exx ;get some unused regs
pop hl ;adjustment value
pop af ;bank number
pop de ;return address
add hl,sp
ld sp,hl ;remove parameters
push de ;push return address back
exx
out0 (BBR),a ;restore bank
ret ;done.

5.20.1 Near and Basenear Functions in Large Model

When using the large (i.e. banked) model, functions are called using the mechanism described above by
default. It is, however, possible to define functions that are called via a simple call/ret sequence, thus
speeding up the code. The two ways to do this are with near functions and with basenear functions.

A near function can be called only from within the same bank, while a basenear function resides in the
common area 0 and can be called from any bank. Near functions should be declared static and called and
called only from within the same module. The following code shows an example of these kind of
functions.

static nearint
read_port(void)
{

while(STATUS & 0x80)
;

return DATA;
142

Stack and Heap Allocation

 5
}

basenear void
kick_dog(void)
{

WATCHDOG = 1;
}

5.21 Stack and Heap Allocation

As previously mentioned, the stack grows downwards. On startup, the stack pointer is initialized to the
top of available memory. For CP/M this is the base of the BDOS. For embedded code, this is defined by
the ram address and ram size defined at link time. The stack is set to the sum of these two values.

The heap is the area of memory dynamically allocated via sbrk(), calloc() or malloc(). It grows upwards
from the top of statically allocated memory. This is defined by the top of the bss psect, which the linker
gives the name __Hbss. Sbrk() checks the amount of memory left between the top of the heap and the
bottom of the stack, and if less than 1k bytes would be left after granting the sbrk() request, it will deny
it. This value may be modified by editing sbrk.as, re-assembling it and replacing it in the appropriate
library (e.g. Z80-SC.lib).

5.22 Local Variables

C supports two classes of local variables in functions: auto variables which are normally allocated on
some sort of stack and static variables which are always given a fixed memory location.

5.22.1 Auto Variables

Auto variables are the default type of local variable. Unless explicitly declared to be static a local
variable will be made auto. Auto variables are allocated on the stack and referenced by indexing off the
IX register. The variables will not necessarily be allocated in the order declared - in contrast to
parameters which are always in lexical order. Note that most type qualifiers cannot be used with auto
variables, since there is no control over the storage location. Exceptions are const and volatile.

5.22.2 Static Variables

Static variables are allocated in the bss psect and occupy fixed memory locations which will not be
overlapped by storage for other functions. Static variables are local in scope to the function which they
are declared in, but may be accessed by other function via pointers. Static variables are guaranteed to
retain their value between calls to a function, unless explicitly modified via a pointer. Static variables
are not subject to any architectural limitations on the Z80.
HI-TECH C Z80 compiler 143

Features and Runtime Environment

 5

ed in
ou are
 here,
embly
ted code

t. The

le, the

uage
ill
ary
ed

les and

dules

in the
nnot be

l

sed as
t

5.23 Compiler Generated Psects

The compiler splits code and data objects into a number of standard program sections (referred to as
“psects”). The HI-TECH assembler allows an arbitrary number of named psects to be includ
assembler code. The linker will group all data for a particular psect into a single segment. If y
using ZC or HPDZ to invoke the linker, you don’t need to worry about the information documented
except as background knowledge. If you want to run the linker manually, or write your own ass
language subroutines you should read this section carefully. The psects used by compiler genera
are:

vectors The vectors psect contains the reset vector and the NMI vector. Vectors is normally linked for
address 0 in ROM so that the Z80 will fetch the reset vector contents from zero on rese
code in this psect comes from the run-time startoff module.

lowtext is used in the large model for code which must go in the common area zero, for examp
startup code.

text is used for all executable code in the small model. User-written assembly lang
subroutines should also be placed in the text psect. When using the large model, C code w
be placed in ltext psects, which will be distributed over various banks, but some libr
functions are placed in the text psect in the common area. All interrupt functions are plac
in the text psect.

If multiple ROMs are being used (small model only) then the contents of the text psect may
be spread over several memory ranges. Code in this psect comes from user modu
libraries.

ltext In large (bankswitched) model, program code from user modules (and library mo
written in C) is placed into local psects called ltext rather than the text psect. This allows the
linker to assign these psects to banks. Each ltext psect will have a different load and link
address. The load address is the physical address in ROM, the link address will be with
banked area in the 64K logical address space. Since these are local psects, they ca
referenced by name in a linker command line, so the psect class basecode is defined to hold
these psects. This class is used in the linker command line to collectively refer to alltext
psects.

strings The strings psect is used for all unnamed string constants, such as string constants pas
arguments to routines like printf() and puts(). This psect is linked into ROM, since it does no
need to be modifiable.

const is used for all initialized constants of class const. For example:

const char masks[] = { 1,2,4,8,16,32,64,128 };
144

Runtime Startoff Modules

 5
This psect is linked into ROM, since it does not need to be modifiable.

im2vecs When using mode 2 interrupts, it is necessary to have a block of memory allocated for the
mode 2 interrupt vector table. This table must start on a 256 byte boundary, and can be up to
256 bytes long. This psect represents that block of memory. It will be linked into ROM after
all other psects in ROM, and aligned on a 256 byte boundary.

basecode is a zero-length psect which specifies the physical address of the bankswitched ROM. In
conjunction with the bank area size, it is used to generate address for banked code, and bank
numbers for use at run-time.

baseram is another zero-length psect used to specify the physical address of RAM. This allows the
Z180 run-time startoff code to set up the mapping of common area 1 to the RAM.

ramstart is another zero-length psect which is provided to specify the start of the RAM area (common
area 1 in the Z180 bankswitched model). Depending on other link options, either the data or
bss psects will start at the beginning of RAM.

data The data psect is used to contain all statically initialized data except those in classes code or
const.

The data psect is linked into ROM, since it is initialised, and is copied into RAM at startup
unless link-time options specify otherwise. If the data psect remains in ROM, no RAM will
be occupied by it, but it cannot be modified at run-time.

bss The bss psect is used for all uninitialized static and extern variables which reside in RAM.
Bss is cleared to all zeros by the runtime startoff code before main() is invoked.

stack is a psect used to specify the top of RAM memory. It does not contain any data and will
always be of zero length. The base address of this psect (from the assembler value __Lstack)
is loaded into the stack pointer in the run-time start-off code.

heap is another zero-length psect used to determine the highest RAM location used. The run-time
heap used for allocating dynamic memory will start from this location, and grow up towards
the stack (which grows downwards).

nvram This psect is used to store persistent variables. It can be assigned an absolute address at link
time, or by default the compiler driver will concatenate it with the bss psect. It is not cleared
or otherwise modified at startup.

5.24 Runtime Startoff Modules

The starting address of a C program is usually the lowest code address; for ROM applications this is the
lowest address in ROM, usually 0h. For CP/M the start address is the base of the TPA, 100h. The global
symbol start is at this address. The code located at the start address performs some initialisation, notably
HI-TECH C Z80 compiler 145

Features and Runtime Environment

 5

ve this
unction

s of
here is
le

bedded

ded in

stem
le, waits
via the
clearing of the bss (uninitialized data) psect and initialising the stack pointer. In the case of CP/M it also
calls a routine to set up the argv and argc values which are passed to main(). Depending on compile-
time options, this routine may or may not expand wild cards in file names (? and *) and perform I/O
redirection.

Having set up the argument list, the startup code calls the function _main. Note the underscore “_”
prepended to the function name: all symbols derived from external names in a C program ha
character prepended by the compiler. This helps prevent conflict with assembler names. The f
main() is, by definition of the C language, the "main program".

The run-time startup code is provided by a standard module found in the LIB directory, chosen from one
of those listed in Table 5 - 6 on page 146.

See the assembler file corresponding to the object file for the startup module source code.

5.24.1 The powerup routine

Some hardware configurations require special initialization, often within the first few cycle
execution after reset. Rather than having to modify the run-time startoff module to achieve this t
a hook to the reset vector provided via the powerup routine. This is a user-supplied assembler modu
that will be executed immediately on reset. Often this can be embedded in a C module as em
assembler code.

The powerup routine is called with the stack pointer set to point at a fake return address embed
the runtime startoff code, thus it does not require any RAM to be working for the stack. The powerup
routine should be written assuming that little or no RAM is working and should only use sy
resources after it has tested and enabled them. The following example code, embedded in a C fi
for dynamic RAM to stabilise after reset, then performs a RAM test. If the test passes, it returns (
hard-coded return address), otherwise it illuminates a LED and hangs:

#asm
;

PSECT text
GLOBALpowerup

;

Table 5 - 6 Standard run-time startoff modules

Model Z80 Startoff Module Z180 Startoff Module

Small RTZ80-S.OBJ RTZ180S.OBJ
CP/M RTZ80-C.OBJ RTZ180C.OBJ
Large RTZ80-L.OBJ RTZ180L.OBJ
146

Runtime Startoff Modules

 5
; Sample powerup routine - tests RAM, leaves
; a LED on and hangs if there is a RAM fault
;
; Assumes RAM: 2000H to 3FFFH, LED: port 0FEH
;
LED EQU 0FEH
RAMSTARTEQU 2000H
RAMSIZEEQU 2000H
;
; Loop, allowing DRAM time to stabilise
;
tbytes:DEFB 55H,0AAH,0FFH,0
;
powerup:LD BC,0FFFFH
1: DEC BC

LD A,B
OR C
JR NZ,1b

;
; Main test loop - test RAM with each of 4
; test values: 55H,0AAH,0FFH and 0
;

LD B,4
LD HL,tbytes

2: LD A,1
OUT (LED),A;LED off
LD A,(HL);get test val
EXX ;preserve HL & B
LD HL,RAMSTART
LD DE,RAMSTART+1
LD BC,RAMSIZE-1
LD (HL),A
EX AF,AF’;preserve A
LDIR ;fill memory

;
; loop for a while, leaving time for
; refresh problems to show up
;

HI-TECH C Z80 compiler 147

Features and Runtime Environment

 5
LD BC,0FFFFH
3: DEC BC

LD A,B
OR C
JR NZ,3b

;
LD A,0
OUT (LED),A;LED off
EX AF,AF’;restore A

;
; Loop through memory testing against
; the value stored.
;

LD HL,RAMSTART
LD BC,RAMSIZE

4: CP (HL) ;check for match
JR NZ,ramerr
INC HL
DEC BC
LD A,B
OR C
JR NZ,4b

;
EXX ;restore regs
INC HL ;next test val
DJNZ 2b
RET

;
; ramerr: turn LED on and hang
;
ramerr:LD A,1

OUT (LED),A
hang: JR hang
;
#endasm

The standard libraries contain default powerup routines as shown in Table 5 - 7 on page 149.
148

Runtime Startoff Modules

 5
5.24.2 Using Linker Defined Symbols

In order for the runtime startoff code to clear the bss psect and copy the data psect, it must determine
the load address, link address and size of these psects. This is achieved using special linker generated
symbols.

The link address of a psect can be obtained from the value of a global symbol with name __Lname
where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The
highest address of a psect (i.e. the link address plus the size) is symbol __Hname. If the psect has
different load and link addresses, as may be the case if the data psect is linked for RAM operation, the
load address is __Bname.

5.24.2.1 Clearing the bss Psect

In the standard Z80 runtime model, the bss psect has the same link and load addresses, so __Bbss is
not defined. Bss is cleared by zeroing __Hbss-__Lbss bytes of memory, starting at address __Lbss.

5.24.2.2 Copying the data Psect

The data psect is linked both in RAM and in ROM. The runtime startoff code must copy the ROM image
to RAM. This is achieved by copying __Hdata-__Ldata bytes from address __Bdata in ROM to
__Ldata in RAM.

5.24.2.3 Initialising the Stack

When ZC or HPDZ invokes the linker, it includes a psect called stack in the linker options. The stack
psect does not contain any data objects and is simply used as a convenient method of specifying the
initial value of the stack pointer. The address given to the stack psect by ZC or HPDZ is the user
specified RAM address plus the user specified RAM size. For example, if you use the ZC option -
A0,8000,4000, the stack psect will be given address 8000H + 4000h = 0C000h. The run-time startoff
code loads the value of __Lstack into the stack pointer before executing any user code.

5.24.3 Customizing the Runtime Startoff Code

If you find that you are running out of ROM space, you may wish to reduce the ROM size further by
customizing the runtime startoff code. The standard runtime startoff modules contains code to clear the
bss psect and copy the data psect. Code space be saved by creating a custom version of the runtime

Table 5 - 7 Default powerup actions

Model/Processor Library Default Powerup Action

Small / Z80 Z80-SC.lib Nothing
Large / Z80 Z80-LC.lib No default: you must provide your own routine
Small / Z180 Z801SC.lib Sets up common area 1 to reference RAM
Large / Z180 Z801LC.lib Sets up bank area and common area 1
HI-TECH C Z80 compiler 149

Features and Runtime Environment

 5
startoff code which performs only those initializations required by your application. The source code for
the runtime startoff code may be found in the SOURCES subdirectory, if installed. Several different
versions of the runtime startoff code are supplied, these are listed in Table 5 - 6 on page 146.

5.24.3.1 Copyright Message

The runtime startoff code includes a HI-TECH C Software copyright message which is linked at the start
of ROM. If you are running out of code space you may wish to delete the copyright message, saving a
small amount of ROM. If ROM space permits, the HI-TECH Software copyright message should be left
intact. You may also wish to add your own copyright message.

5.24.3.2 Using the New Runtime Startoff Code

Once you have modified the runtime startoff code to suit your needs, reassemble it using the command:

ZAS -x RTZ80xx.AS

where RTZ80xx.AS is the name of the startoff module which you have modified. The runtime startoff
code should be copied to the library subdirectory. For most installations it will be C:\HT-Z80\LIB. Once
the modified startoff code is present in the library directory, you need only relink your application to use
your modifications. If you are using customized runtime startoff code, you need to be careful when
making further modifications to your application. If you are running a minimal startoff module and add
code which uses the bss psect or RAM based data you may have problems. Without the bss clear code,
any uninitialized variables in external RAM will not be cleared to zero before main() is invoked. More
importantly, if the initialized data is used, but the data copy code is missing, statically initialized
variables will not be set to their correct values at startup.

5.25 Optimizing Code for the Z80

Care needs to be taken to avoid writing code which will be large or inefficient. To improve execution
speed and reduce code size, some or all of these suggestions can be used:

❒ Use 8 bit quantities (char or unsigned char) where appropriate rather than 16 bit quantities, as
this consumes less space and can be accessed more quickly.

5.26 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard pragma facility. The format of a pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options. A list of the
keywords is given in Table 5 - 8 on page 151. Each keyword is discussed below.
150

Pragma Directives

 5
5.26.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other
national characters, the #pragma jis directive will enable proper handling of these characters,
specifically not interpreting a back-slash (\) character when it appears as the second half of a two byte
character. The nojis directive disables this special handling. JIS character handling is off by default.

5.26.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner of printf(). Although the format string is interpreted at run-time, it can be compile-time checked
for consistency with the remaining arguments. This directive enables this checking for the named
function, e.g. the system header file <stdio.h> includes the directive #pragma printf_check(printf) to
enable this checking for printf(). You may also use this for any user-defined function that accepts printf-
style format strings. Note that the warning level must be set to -1 or below for this option to have effect.

5.26.3 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as already
documented. This is fine for most applications, but sometimes it is necessary to redirect variables or
code into different psects when a special memory configuration is desired. For example, if the hardware
includes an area of memory which is battery backed, it may be desirable to redirect certain variables
from bss into a psect which is not cleared at startup (although this particular function is provided as a
standard feature). Code and data for any of the standard C psects may be redirected using a #pragma
psect directive. For example, if all executable code generated by a particular C source file is to be
placed into a psect called altcode,the following directive should be used:

#pragma psect text=altcode

This directive tells the compiler that anything which would normally be placed in the text psect should
now be placed in the altcode psect. Any given psect should only be redirected once in a particular
source file, and all psect redirections for a particular source file should be placed at the top of the file,

Table 5 - 8 Pragma directives

Directive Meaning Example

jis Enable JIS character handling in strings #pragma jis
nojis Disable JIS character handling (default) #pragma nojis
printf_check Enable printf-style format string checking #pragma

printf_check(printf)
psect Rename compiler-defined psect #pragma psect

text=mytext
strings Define constant string qualifiers #pragma strings code
HI-TECH C Z80 compiler 151

Features and Runtime Environment

 5
below any #includes and above any other declarations. For example, to declare a group of
uninitialized variables which are all placed in a psect called xram, the following technique should be
used:

---File XRAM.C
#pragma psect bss=xram
char buffer[20];
int var1, var2, var3;

Any files which need to access the variables defined in XRAM.C should #include the following
header file:

--File XRAM.H
extern char buffer[20];
extern int var1, var2, var3;

The #pragma psect directive allows code and data to be split into arbitrary memory areas.
Definitions of code or data for non-standard psects should be kept in separate source files as documented
above. When linking code which uses non-standard psect names, you will not be able to use the ZC -A
option to specify the link addresses for the new psects, instead you will need to use the ZC -L option to
specify an extra linker option, use the linker manually or use an HPDZ project to compile and link your
code. If you want a nearly standard configuration with the addition of only an extra psect like xram, you
can use the ZC -L option to add an extra -P specification to the linker command. For example:

ZC -L-Pxram=1000h/20000h -A0,8000,8000 test.obj xv.obj

will link TEST.OBJ and NV.OBJ with a standard configuration of ROM at 0h, RAM at 8000h, and the
extra xram psect at 1000h in RAM, but not overlapping any valid ROM load address. If you are using
the HPDZ integrated environment you can set up a project file by selecting Start New Project, add the
names of your four source files using Source Files ... and then modify the linker options to include any
new psects by selecting Linker Options

5.26.4 The #pragma strings Directive

Any user-defined variables can be qualified by a number of type qualifiers (see Special Type Qualifiers
on page 121) but constant strings (i.e. anonymous strings embedded in expressions) normally are
unqualified. This means they will be put into the data segment. To control this behaviour, the #pragma
psect strings directive allows you to specify a set of qualifiers to be applied to all subsequent constant
strings. If a qualifier is specified, it will be added to any qualifiers specified previously. Using the
directive without a qualifier will remove all qualifiers from any subsequent strings, i.e. restore to normal.

For example., to qualify strings with code you should use the example given in Table 5 - 8 on page 151.
Note that all constant strings will then have type pointer to code char and will not be usable where a
simple pointer to char is expected.
152

Standard I/O Functions and Serial I/O

 5
5.26.5 The #pragma switch Directive

The compiler generates several different kinds of code for switch statements. Usually the compiler will
choose the smallest code for a given switch. The major methods are a direct switch, where a jump table
is indexed by the value being switched on, and a simple switch, where a sequence of comparisons are
done. A direct switch operates in constant time and will usually be faster on average than a simple
switch, but can be quite large for a sparse set of case labels. If you have a particular need for a
deterministic time switch, you can select a direct switch with this directive. A #pragma switch directive
will have effect only for the immediate next switch statement, and only if this appears in the same
function. The possible arguments to this directive are auto, which restores behaviour to the default,
direct, which selects a direct switch, and simple which selects a simple switch. See the example in
Table 5 - 8 on page 151.

5.27 Standard I/O Functions and Serial I/O

A number of the standard I/O functions are provided in the C library with the ZC compiler, specifically
those functions intended to read and write formatted text on standard output and input. A list of the
available functions is in Table 5 - 9 on page 153. More details of these functions are in the Library

Functions chapter. You must link either sersio.c (for Z80 SIO) or ser180.c (for Z180) before any
characters written or read using these functions will be sent or received. Look at these files, which are
located in the sources directory, to ensure they support your hardware.

Table 5 - 9 Supported STDIO functions

Function name Purpose

puts(char * s) Writes a string to stdout, appends newline
char * gets(char * buf) Gets a line of text from stdin to buf, removes newline
printf(char * s, ...) Formatted printing to stdout
putchar(int c) Puts a single character to stdout
scanf(char *, ...) Reads formatted input from stdin
sprintf(char * buf, char * s, ...) Writes formatted text to buf
sscanf(char * buf, char * s, ...) Reads formatted text from buf
vprintf(char * s, va_arg list) Version of printf taking argument list
vscanf(char * s, va_arg list) Version of scanf taking argument list
vsprintf(char * buf, char * s, va_arg list) Version of sprintf taking argument list
vsscanf(char * buf, char * s, ...) Version of sscanf taking argument list
HI-TECH C Z80 compiler 153

Features and Runtime Environment

 5
If the code is run under the Lucifer debugger, link in ser180.c. The host portion of the debugger will act
as a dumb terminal. If you wish to send or receive characters via some other means (e.g. to an LCD
display) you should modify one or other of the modules in sersio.c or ser180.c.

To replace one of these modules with your own version, copy the source code from the SOURCES
directory to a file in your working directory, make whatever changes are needed, and include this file in
your project - either in the Source files list in HPDZ or on the command line to ZC. You must retain all
the functions present in the module, even if some are unused (in which case they can be empty
functions). Failure to do so may lead to multiply defined symbol messages at link time.
154

 6

ons are

ce file is
d on the
nsions

f each

lled
ill
e run
The Z80 Macro Assembler

The HI-TECH Software Z80 Macro Assembler assembles source files for the Z80 and Z180 family of
microprocessors. This chapter describes the usage of the assembler and the directives (assembler
pseudo-ops and controls) accepted by the assembler.

The HI-TECH assembler package includes a linker, librarian, cross reference generator and an object
code converter.

6.1 Assembler usage

The assembler is called ZAS and is available to run under the UNIX and MS-DOS operating systems.
Note that the assembler will not produce any messages unless there are errors or warnings - there are no
“assembly completed” messages.

The usage of the assembler is similar under all of these operating systems. All command line opti
recognised in either upper or lower case. The basic command format is shown:

zas [options] files ...

Files is a space separated list of one or more assembler source files. Where more than one sour
specified the assembler treats them as a single module, i.e. a single assembly will be performe
concatenation of all the source files specified. The files must be specified in full, no default exte
or suffixes are assumed.

Options is an optional space separated list of assembler options, each with a minus sign (-) as the first
character. A full list of possible options is given in Table 6 - 1 on page 156, and a full description o
option follows.

6.2 Assembler options

The command line options recognised by ZAS are as follows:

-C A cross reference file will be produced when this option is used. This file, ca
srcfile.crf where srcfile is the base portion of the first source file name, w
contain raw cross reference information. The cross reference utility CREF must then b
to produce the formatted cross reference listing.

-E The default format for an error message is in the form:

filename:line: message
HI-TECH C Z80 compiler 155

The Z80 Macro Assembler

 6
where the error of type message occurred on line line of the file filename. The -E2 option
will produce a less-readable format which is used by HPD.

-I This option forces listing of macro expansions and unassembled conditionals which would
otherwise be suppressed by a *LIST OFF assembler control. The -L option is still necessary
to produce a listing.

-J This requests the assembler to attempt to assemble jumps and conditional jumps as relative
branches where possible. Only those conditional jumps with branch equivalents will be
optimised, and jumps will only be optimised to branches where the target is in branch range.
Note that the use of this option slows the assembly down, as the assembler must make an
additional pass over the input code.

-Llistfile This option requests the generation of an assembly listing. If listfile is specified then the
listing will be written to that file, otherwise it will be written to the standard output.

-N This suppresses the normal check for arithmetic overflow.

The assembler follows the “Z80 Assembly Language Handbook” in its treatment of overflow,
and in certain instances this can lead to an error where in fact the expression does evaluate to
what the user intended. The -N option may be used to override the overflow checking.

-O By default the assembler determines the name of the object file to be created by stripping any
suffix or extension (i.e. the portion after the last dot) from the first source file name and

Table 6 - 1 ZAS assembler options

Option Meaning Default

-C Produce cross-reference No cross reference
-Eformat Set error format
-I List macro expansions Don’t list macros
-J Optimise jumps to branches Don’t optimise jumps
-Llistfile Produce listing No listing
-N Ignore arithmetic overflow
-Ooutfile Specify object name srcfile.OBJ
-Plength Specify listing form length 66
-S No size error messages
-U No undef’d symbol messages
-V Produce line number info No line numbers
-Wwidth Specify listing page width 80
-X No local symbols in OBJ file
156

Z80 Assembly language

 6

n error

 file
r code

local

ow. All

ut not

arge to
 by a

fiers.
appending .OBJ. The -O option allows the user to override the default and specify and
explicit filename for the object file.

-Plength The default listing pagelength is 66 lines (11 inches at 6 lines per inch). The -P option allows
a different page length to be specified.

-S If a byte-size memory location is intialized with a value which is too large to fit in 8 bits, then
the assembler will generate a “Size error” message. Use of the -S option will suppress this
type of message.

-U Undefined symbols encountered during assembly are treated as external, however a
message is issued for each undefined symbol unless the -U option is given. Use of this option
suppresses the error messages only, it does not change the generated code.

-V This option will include in the object file produced by the assembler line number and
name information for the use of a debugger. Note that the line numbers will be assemble
lines - when assembling a file produced by the compiler, there will be line and file directives
inserted by the compiler so this option is not required.

-Wwidth This option allows specification of the listfile paper width, in characters. Width should be a
decimal number greater than 41. The default width is 80 characters.

-X The object file created by the assembler contains symbol information, including
symbols, i.e. symbols that are neither public or external. The -X option will prevent the local
symbols from being included in the object file, thereby reducing the file size.

6.3 Z80 Assembly language

The source language accepted by the HI-TECH Software Z80 Macro Assembler is described bel
opcode mnemonics and operand syntax are strictly Z80 assembly language.

6.3.1 Character set

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, b
opcodes and reserved words. Tabs are treated as equivalent to spaces.

6.3.2 Constants

6.3.2.1 Numeric Constants

The assembler performs all arithmetic as signed 32 bit. Errors will be caused if a quantity is too l
fit in a memory location. The default radix for all numbers is 10. Other radices may be specified
trailing base specifier as given in Table 6 - 2 on page 158.

Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi
Hexadecimal constants are accepted in either upper or lower case.
HI-TECH C Z80 compiler 157

The Z80 Macro Assembler

 6
Note that a binary constant must have an upper case B following it, as a lower case b is used for
temporary (numeric) label backward references.

Real numbers are accepted in the usual format for DEFF directives only. The exponent and mantissa of
a real number must be decimal. When using the DEFF directive, real numbers are stored in 32 bit HI-
TECH C format. A real number should include a decimal point, but the exponent and sign are optional.
If the exponent is present, it should follow the mantissa without any intervening white space.

6.3.2.2 Character Constants

A character constant is a single character enclosed in single quotes (’). Multi character constants may
be used only as an operand to a DEFM pseudo-op.

6.3.2.3 Opcode Constants

Any Z80 opcode may be used as a constant in an expression. The value of the opcode in this context will
be the byte that the opcode would have assembled to if used in the normal way. If the opcode is a 2-byte
opcode (CB or ED prefix byte) only the second byte of the opcode will be used. This is particularly useful
when setting up jump vectors. For example:

ld a,jp ;a jump instruction
ld (0),a ;0 is jump to warm boot
ld hl,boot;done here
ld (1),hl

6.3.3 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the end
of a line.

6.3.4 Special characters

There are a few characters that are special in certain contexts. Within a macro body, the character @ is
used for token concatenation. In a macro argument list, the angle brackets < and > are used to quote
macro arguments.

Table 6 - 2 ZAS numbers and bases

Radix Format

Binary digits 0 and 1 followed by B
Octal digits 0 to 7 followed by O, Q, o or q
Decimal digits 0 to 9 followed by D, d or nothing
Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h
158

Z80 Assembly language

 6
6.3.5 Identifiers

Identifiers are user-defined symbols representing memory locations or numbers. A symbol may contain
any number of characters drawn from the alphabetics, numerics and the special characters dollar ($),
question mark (?) and underscore (_). The first character of an identifier may not be numeric. The case
of alpahabetics is significant, e.g. Fred is not the same symbol as fred. Some examples of identifiers are
shown here:

An_identifier
an_identifier
an_identifier1
$$$
?$_12345

6.3.5.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note that
this assembler attaches no significance to any symbol, and places no restrictions or expectations on the
usage of a symbol. The names of psects (program sections) and ordinary symbols occupy separate,
overlapping name spaces, but other than this, the assembler does not care whether a symbol is used to
represent bytes, words or chicken sheds. No special syntax is needed or provided to define the addresses
of bits or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for the
assembler to generate correct code.

6.3.5.2 Assembler Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have the
form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the same
form.

6.3.5.3 Location Counter

The current location within the active program section is accessible via the symbol $.

6.3.5.4 Register symbols

All registers are available by using their standard names, e.g. BC de etc. Case of register names is not
significant. It is not possible to equate a symbol to a register.

6.3.5.5 Labels

A label is a name at the beginning of a statement, terminated by a colon, which is assigned a value equal
to the current offset within the current psect (program section). A label may be any symbol (including
HI-TECH C Z80 compiler 159

The Z80 Macro Assembler

 6

’ or ‘b’
nd by
look

niquely.

meric

tching
ust be

 operand
ed.

ary (one
ed
 starting
numeric labels). A label is not the same as a macro name, which also appears at the beginning of the line
in a macro declaration, but is not followed by a colon.

6.3.5.6 Temporary labels

The assembler implements a system of temporary labels (as distinct from the local labels used in macros)
which relieves the programmer from creating new labels within a block of code. A temporary label is
defined as a numeric string, and may be referenced by the same numeric string with either an ‘f
suffix. When used with an ‘f’ suffix, the label reference is the first label with the same number fou
looking forward from the current location, and conversely a ‘b’ will cause the assembler to
backward for the label.

For example:

entry_point:;This is referenced from far away
ld b,10

1: dec c
jr nz,2f ;Zero?, branch forward to 2:
ld c,8
djnz 1b ;Decrement, branch back to 1:
jr 1f ;This does not branch to the

;same label as the djnz.
2: call fred ;Get here from the jr nz,2f
1: ret ;Get here from the jr 1f

Note that even though there are two 1: labels, no ambiguity occurs, since each is referred to u
The djnz 1b refers to a label further back in the source code, while jr 1f refers to a label further forward.
In general, to avoid confusion, it is recommended that within a routine you do not duplicate nu
labels.

6.3.6 Strings

A string is a sequence of characters not including carriage return or newline, enclosed within ma
quotes. Either single (’) or double (") quotes may be used, but the opening and closing quotes m
the same. A string used as an operand to a DB directive may be any length, but a string used as
to an instruction must not exceed 1 or 2 characters, depending on the size of the operand requir

6.3.7 Expressions

Expressions are made up of numbers, symbols, strings and operators. Operators can be un
operand, e.g. .NOT.) or binary (two operands, e.g. +). The operators allowable in expressions are list
in Table 6 - 3 on page 161. The usual rules governing the syntax of expressions apply. Operators
with a dot "." should be delimited by spaces, thus
160

Z80 Assembly language

 6
label .and. 1

is valid but

label.and.1

is not.

Table 6 - 3 Operators

Operator Purpose

& Bitwise AND
* Multiplication
+ Addition
- Subtraction
/ Division
< Signed less than
= Equality
> Signed greater than
<= Signed less than or equal to
>= Signed greater than or equal to
<> Signed not equal to
\ Not
^ or | Bitwise or
and or .and. Bitwise AND
eq or .eq. Equality test
gt or .gt. Signed greater than
high or .high. High byte of operand
low or .low. Low byte of operand
lt or .lt. Signed less than
mod or .mod. Modulus
not or .not. Bitwise compliment
or or .or. Bitwise or
shl or .shl. Shift left
shr or .shr. Shift right
ult or .ult. Unsigned less than
ugt or .ugt. Unsigned greater than
xor or .xor. Exclusive or
seg Segment (bank number) of address
HI-TECH C Z80 compiler 161

The Z80 Macro Assembler

 6
The operators listed may all be freely combined in both constant and relocatable expressions. The HI-
TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

6.3.8 Statement format

Legal statement formats are shown in table Table 6 - 4 on page 162. The second form is only legal with

certain directives, such as MACRO, SET and EQU. The label field is optional and if present should
contain one identifier. The name field is mandatory and should also contain one identifier. Note that a
label, if present, is followed by a colon. There is no limitation on what column or part of the line any
part of the statement should appear in.

6.3.9 Program sections

Program sections, or psects, are a way of grouping together parts of a program even though the source
code may not be physically adjacent in the source file, or even where spread over several source files.
Unless defined as ABS (absolute), psects are relocatable.

A psect is identified by a name and has several attributes. The psect directive is used to define psects. It
takes as arguments a name and an optional comma-separated list of flags. See the section PSECT on
page 165 for full information. The assembler associates no significance to the name of a psect.

The following is an example showing some executable instructions being placed in the text psect, and
some data bytes being placed in the data psect.

psect text, global
alabel:

ld hl,astring
call putit
ld hl,anotherstring
psect data, global

astring:
defm ’A string of chars’
defb 0

anotherstring:
defm ’Another string’

Table 6 - 4 ZAS statement formats

label: opcode operands ;comment
name pseudo-op operands ;comment
;comment only
162

Z80 Assembly language

 6
defb 0
psect text

putit:
ld a,(hl)
or a
ret z
call outchar
inc hl
jr putit

Note that even though the two blocks of code in the text psect are separated by a block in the data psect,
the two text psect blocks will be contiguous when loaded by the linker. The instruction ld
hl,anotherstring will fall through to the label putit: during execution. The actual location in
memory of the two psects will be determined by the linker. See the linker manual for information on
how psect addresses are determined.

A label defined in a psect is said to be relocatable, that is, its actual memory address is not determined
at assembly time. Note that this does not apply if the label is in the default (unnamed) psect, or in a psect
declared absolute (see the PSECT pseudo-op description below). Any labels declared in an absolute
psect will be absolute, that is their address will be determined by the assembler.

Relocatable expressions may be combined freely in expressions.

6.3.10 Extended Condition Codes

The assembler recognises several additional condition codes as listed in Table 6 - 5 on page 163.

6.3.11 Assembler directives

Assembler directives, or pseudo-ops, are used in a similar way to opcodes, but either do not generate
code, or generate non-executable code, i.e. data bytes. The directives are listed in table Table 6 - 6 on
page 164, and detailed below.

Table 6 - 5 Extended condition codes

Code Meaning Equivalent

alt Arithmetic less-than m
llt Logical less-than c
age Arithmetic greater-than or equal-to p
lge Logical greater-than or equal-to nc
di,ei Use after ld a,i for testing state of interrupt

enable flag - enabled or disabled respectively.
HI-TECH C Z80 compiler 163

The Z80 Macro Assembler

 6
6.3.11.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public,
otherwise are references to symbols in external modules. Example:

GLOBAL lab1,lab2,lab3

6.3.11.2 END

END is optional, but if present should be at the very end of the program. It will terminate the assembly.
If an expression is supplied as an argument, that expression will be used to define the start address of
the program. Whether this is of any use will depend on the linker. Example:

END start_label

Table 6 - 6 ZAS directives (pseudo-ops)

Directive Purpose

GLOBAL Make symbols accessible to other modules or allow reference to other modules’ symbols

END End assembly
PSECT Declare or resume program section
ORG Set location counter
EQU Define symbol value
DEFL Define or re-define symbol value
DEFB, DB Define constant byte(s)
DEFW Define constant word(s)
DEFF Define constant real(s)
DEFM Define message
DEFS, DS Reserve storage
IF, COND Conditional assembly
ELSE Alternate conditional assembly
ENDC End conditional assembly
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
SIGNAT Define function signature
164

Z80 Assembly language

 6
 may

 psects
 name.

om

 if
y global

an
.

ay
ends
6.3.11.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and optionally
a comma separated list of flags. The allowed flags are listed in Table 6 - 7 on page 165 and detailed
below. Once a psect has been declared it may be resumed later by simply giving its name as an argument
to another psect directive; the flags need not be repeated.

r ABS defines the current psect as being absolute, i.e. it is to start at location 0. This does not
mean that this module’s contribution to the psect will start at 0, since other modules
contribute to the same psect.

r The CLASS flag specifies a class name for this psect. Class names are used to allow local
to be referred to by a class name at link time, since they cannot be referred to by their own
Class names are also useful where the linker address range feature is to be used.

r A psect defined as GLOBAL will be combined with other global psects of the same name fr
other modules at link time. GLOBAL is the default.

r A psect defined as LOCAL will not be combined with other local psects at link time, even
there are others with the same name. A local psect may not have the same name as an
psect, even one in another module.

r A psect defined as OVRLD will have the contribution from each module overlaid, rather th
concatenated at run time. OVRLD in combination with ABS defines a truly absolute psect, i.e
a psect within which any symbols defined are absolute.

r The PURE flag instructs the linker that this psect will not be modified at run time and m
therefore, for example, be placed in ROM. This flag is of limited usefulness since it dep
on the linker and target system enforcing it.

Table 6 - 7 PSECT flags

Flag Meaning

ABS Psect is absolute
CLASS Specify class name for psect
GLOBAL Psect is global (default)
LOCAL Psect is not global
OVRLD Psect will overlap same psect in other modules
PURE Psect is to be read-only
RELOC Start psect on specified boundary
SELECTOR Page number for banked areas
SIZE Maximum size of psect
HI-TECH C Z80 compiler 165

The Z80 Macro Assembler

 6
r The RELOC flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g. RELOC=100h would specify that this psect must start on an address that is a
multiple of 100h.

r The SELECTOR flag is calculated by the linker from the load address of a psect, either
automatically by a default rule, or by an explicit rule passed with a -g option to the linker.

r The SIZE flag allows a maximum size to be specified for the psect, e.g. SIZE=100h. This will
be checked by the linker after psects have been combined from all modules.

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE

6.3.11.4 ORG

ORG changes the value of the location counter within the current psect. This means that the addresses
set with ORG are relative to the base of the psect, which is not determined until link time.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In either
case the current location counter is set to the value of the argument. For example:

ORG 100h

In order to use the ORG directive to set the location counter to an absolute value, an absolute, overlaid
psect must be used:

psect absdata, abs, ovrld
org addr

where addr is an absolute address.

6.3.11.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

assemblyEQU 123h

The identifier assembly will be given the value 123h. EQU is legal only when the symbol has not
previously been defined. The operand may also be a register name, in which case the symbol will
become a synonym for the register.

6.3.11.6 DEFL

DEFL (define label) is identical to EQU except that it may be used to re-define a symbol.
166

Z80 Assembly language

 6
6.3.11.7 DEFB, DB

DEFB and DB are identical and are used to initialize storage as bytes. The argument is a list of
expressions, each of which will be assembled into one byte. DEFB and DB may also take a multi-
character string as an argument. Each character of the string will be assembled into one memory
location.

An error will occur if the value of an expression is too big to fit into the memory location, e.g. if the
value 1020 is given as an argument to DB.

Examples:

alabel:DB ’X’,1,2,3,4,"A string",0

6.3.11.8 DEFW

DEFW operates in a similar fashion to DEFB, except that it assembles expressions into words. An error
will occur if the value of an expression is too big to fit into a word.

Example:

DEFW -1, 3664H, ‘A’, 3777Q

6.3.11.9 DEFF

DEFF initializes 4 bytes of memory as real numbers. Each number will be stored in 32 bit HI-TECH C
format. For example:

pi: DEFF 3.14159
DEFF 3.3,3e10,-23

6.3.11.10 DEFS, DS

This directive reserves, but does not initialize, memory locations. The single argument is the number of
bytes to be reserved. Examples:

alabel:DEFS 23 ;Reserve 23 bytes of memory
xlabel:DEFS 2+3 ;Reserve 5 bytes of memory

6.3.11.11 IF, COND, ELSE and ENDC

These directives implement conditional assembly. IF and COND are identical. The argument to IF
should be an absolute expression. If it is non-zero, then the code following it up to the next matching
ELSE will be assembled. If the expression is zero then the code up to the next matching ELSE will be
skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDC will terminate the
conditional assembly block. Example:
HI-TECH C Z80 compiler 167

The Z80 Macro Assembler

 6
IF CPM
call 5
ELSE
call os_func
ENDC

In this example, if CPM is non-zero, the first call instruction will be assembled but not the second.
Conversely if CPM is zero, the second call will be assembled but the first will not. Conditional assembly
blocks may be nested.

6.3.11.12 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by the
macro name and optionally followed by a comma separated list of formal parameters. When the macro
is used, the macro name should be used in the same manner as a machine opcode, followed by a list of
arguments to be substituted for the formal parameters.

For example:

print MACRO string
psect data

999: db string,’$’
psect text
ld de,999b
ld c,9
call 5
ENDM

When used, this macro will expand to the 3 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

print ’hello world’

expands to:

psect data
999: db ‘hello world','$'

psect text
ld de,999b
ld c,9
call 5

The & character may be used to delimit an argument used in the coding of the macro, thus permitting
the concatenation of macro parameters with other text, but is removed in the actual macro expansion.
168

Z80 Assembly language

 6
The & character need not be used if commas and spaces delimit the argument, but the & character should
be used at the start and end if no other delimiter is available.

The NUL operator may be used within a macro to test a macro argument. A comment may be suppressed
within the expansion of a macro (thus saving space in the macro storage) by opening the comment with
a double semicolon (;;).

6.3.11.13 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted for
them when the macro is expanded. For example:

copy MACRO source,dest,count
LOCAL nocopy
push af
push bc
ld bc,source
ld a,b
or c
jr z,nocopy
push de
push hl
ld de,dest
ld hl,source
ldir
pop hl
pop de

nocopy:pop bc
pop af
ENDM

when expanded will include a unique assembler generated label in place of nocopy. For example, copy
(recptr),buf,(recsize) will expand to:

push af
push bc
ld bc,(recsize)
ld a,b
or c
jr z,??0001
push de
HI-TECH C Z80 compiler 169

The Z80 Macro Assembler

 6
push hl
ld de,buf
ld hl,(recptr)
ldir
pop hl
pop de

??0001:pop bc
pop af

if invoked a second time, the label nocopy would expand to ??0002.

6.3.11.14 REPT

The REPT directive temporarily defines an unnamed macro then expands it a number of times as
determined by its argument. For example:

REPT 3
ld (hl),0
inc hl
ENDM

will expand to

ld (hl),0
inc hl
ld (hl),0
inc hl
ld (hl),0
inc hl

6.3.11.15 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT. However, instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP the
list is a conventional macro argument list, in the case or IRPC it is each character in one argument. For
each repetition the argument is substituted for one formal parameter.

For example:

IRP string,<’hello world’,13,10>,’arg2’
LOCAL str
psect data

str: db string,’$’
psect text
170

Z80 Assembly language

 6
ld c,9
ld de,str
call 5
ENDM

would expand to
psect data

??0001:db ‘hello world',13,10,'$'
psect text
ld c,9
ld de,??0001
call 5
psect data

??0002:db ‘arg2','$'
psect text
ld c,9
ld de,??0002
call 5

Note the use of LOCAL labels and angle brackets in the same manner as with conventional macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-space
characters. For example:

IRPC char,ABC
ld c,2
ld e,'char'
call 5
ENDM

will expand to:
ld c,2
ld e,'A'
call 5
ld c,2
ld e,'B'
call 5
ld c,2
ld e,'C'
call 5
HI-TECH C Z80 compiler 171

The Z80 Macro Assembler

 6
6.3.11.16 SIGNAT

This directive is used to associate a 16 bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from C. For
example:

SIGNAT_fred,8192

will associate the signature value 8192 with symbol _fred. If a different signature value for _fred is
present in any object file, the linker will report an error.

6.3.12 Macro invocations

When invoking a macro, the argument list must be comma separated. If it is desired to include a comma
(or other delimiter such as a space) in an argument then angle brackets (< and >) may be used to quote
the argument. In addition the exclamation mark (!) may be used to quote a single character. The
character immediately following the exclamation mark will be passed into the macro argument even if
it is normally a comment indicator.

If an argument is preceded by a percent sign (%), that argument will be evaluated as an expression and
passed as a decimal number, rather than as a string. This is useful if evaluation of the argument inside
the macro body would yield a different result.

6.3.13 Assembler controls

Assembler controls may be included in the assembler source to control such things as listing format.
Each assembler control starts with the asterisk (*) character. These keywords have no significance
anywhere else in the program. Some keywords are followed by a parameter.

A list of keywords is given in Table 6 - 8 on page 172, and each is described further below.

Table 6 - 8 ZAS assembler controls

Control name Meaning

*EJECT Start a new page in the listing
*HEADING string Define the subtitle for the listing
*INCLUDE file Textually include another source file
*LIST on|off Turn the listing on or off
*TITLE string Define the title for the listing
172

Z80 Assembly language

 6
6.3.13.1 *EJECT

*EJECT causes a new page to be started in the listing. A control-L (form feed) character will also cause
a new page when encountered in the source.

6.3.13.2 *HEADING string

The *HEADING assembler control defines a subtitle for the listing. The subtitle appears at the top of
each page, but can be changed from time to time. Here is an example:

*heading Initialisation Phase.

6.3.13.3 *INCLUDE file

This assembler control can be used to textually includes another source file. For example:

*include frame.inc

will include the file frame.inc at that point when assembling.

6.3.13.4 *LIST on|off

This directive turns listing on and off. With listing off, none of the generated code or the source code
that produces it is listed in the listing file. Examples:

*List on
*List off

6.3.13.5 *TITLE string

This control keyword defines a title which appears at the top of every listing page. The title can be set
only once in a file. For example:

*title Heater Control Program
HI-TECH C Z80 compiler 173

The Z80 Macro Assembler

 6
174

 7
Linker and Utilities Reference Manual

7.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C source
files. This means that a program may be divided into several source files, each of which may be kept to
a manageable size for ease of editing and compilation, then each source file may be compiled separately
and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most instances
it will not be necessary to use the linker directly, as the compiler drivers (HPD or command line) will
automatically invoke the linker with all necessary arguments. Using the linker directly is not simple, and
should be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker arguments
constructed by the compiler driver, and modify them as appropriate. This will ensure that the necessary
startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for several
different processors. Not all features described in this chapter are applicable to all compilers.

7.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The object files
are said to be relocatable since the files have sufficient information in them so that any references to
program or data addresses (e.g. the address of a function) within the file may be adjusted according to
where the file is ultimately located in memory after the linkage process. Thus the file is said to be
relocatable. Relocation may take two basic forms; relocation by name, i.e. relocation by the ultimate
value of a global symbol, or relocation by psect, i.e. relocation by the base address of a particular section
of code, for example the section of code containing the actual executable instructions.

7.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which will
be referred to as psects. These psects represent logical groupings of certain types of code bytes in the
program. In general the compiler will produce code in three basic types of psects, although there will be
several different types of each. The three basic kinds are text psects, containing executable code, data
psects, containing initialised data, and bss psects, containing uninitialised but reserved data.
HI-TECH C Z80 compiler 175

Linker and Utilities Reference Manual

 7
The difference between the data and bss psects may be illustrated by considering two external variables;
one is initialised to the value 1, and the other is not initialised. The first will be placed into the data psect,
and the second in the bss psect. The bss psect is always cleared to zeros on startup of the program, thus
the second variable will be initialised at run time to zero. The first will however occupy space in the
program file, and will maintain its initialised value of 1 at startup. It is quite possible to modify the value
of a variable in the data psect during execution, however it is better practice not to do so, since this leads
to more consistent use of variables, and allows for restartable and romable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

7.4 Local Psects

Most psects are global, i.e. they are referred to by the same name in all modules, and any reference in
any module to a global psect will refer to the same psect as any other reference. Some psects are local,
which means that they are local to only one module, and will be considered as separate from any other
psect even of the same name in another module. Local psects can only be referred to at link time by a
class name, which is a name associated with one or more psects via a CLASS= directive in assembler
code.

7.5 Global Symbols

The linker handles only symbols which have been declared as global to the assembler. From the C source
level, this means all names which have storage class external and which are not declared as static. These
symbols may be referred to by modules other than the one in which they are defined. It is the linker’s job
to match up the definition of a global symbol with the references to it. Other symbols (local symbols)
are passed through the linker to the symbol file, but are not otherwise processed by the linker.

7.6 Link and load addresses

The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which may
or may not be the same as the link address, is the address at which the psect will start within the output
file (hex or binary file etc.). In the case of the 8086 processor, the link address roughly corresponds to
the offset within a segment, while the load address corresponds to the physical address of a segment.
The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is copied
from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that is mapped
from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.
176

Operation

 7
7.7 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some way.
Files is one or more object files, and zero or more library names. The options recognised by the linker
are listed in Table 7 - 1 on page 177 and discussed in the following paragraphs.

1. In earlier versions of HI-TECH C the linker was called LINK.EXE

Table 7 - 1 Linker Options

Option Effect

-Aclass=low-high,... Specify address ranges for a class
-Cx Call graph options
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based at baseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages to errfile
-F Produce .OBJ file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in .OBJ file
-LM Preserve segment relocation items in .OBJ file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
HI-TECH C Z80 compiler 177

Linker and Utilities Reference Manual

 7

p file
 -CC

 full
7.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a hex
number, a trailing ’H’ should be added, e.g. 765FH will be treated as a hex number.

7.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but sometimes
it is desired to have a class of psects linked into more than one non-contiguous address range. This option
allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution to a
psect from one module cannot be split, but the linker will attempt to pack each block from each module
into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a repeat
count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though the
ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
character ‘x’ or ‘*’ after a range, followed by a count.

7.7.3 -Cx

These options allow control over the call graph information which may be included in the ma
produced by the linker. The -CN option removes the call graph information from the map file. The
option only include the critical paths of the call graph. A function call that is marked with a ‘*’ in a

-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use file avmap to generate an Avocet format symbol file
-Wwarnlev Set warning level (-10 to 10)
-Wwidth Set map file width (>10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from symbol file

Table 7 - 1 Linker Options

Option Effect
178

Operation

 7
call graph is on a critical path and only these calls are included when the -CC option is used. A call graph
is only produced for processors and memory models that use a compiled stack.

7.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on the
command line since classes are specified in object files.

7.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined. The
delta value should be a number and represents the number of bytes per addressable unit of objects within
the psects. Most psects do not need this option as they are defined with a delta value.

7.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where each
line has the link address of the symbol followed by the symbol name.

7.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

7.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used again
in a subsequent linker run to supply symbol values. The -F option will suppress data and code bytes from
the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program is
contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the files
for the other device. The process can then be repeated for the other files and device.

7.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker can
assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous group of
psects where each psect in sequence has both its link and load address concatenated with the previous
psect in the group. The segment address or selector for the segment is the value derived when a segment
type relocation is processed by the linker.
HI-TECH C Z80 compiler 179

Linker and Utilities Reference Manual

 7
By default the segment selector will be generated by dividing the base load address of the segment by
the relocation quantum of the segment, which is based on the RELOC= value given to psects at the
assembler level. This is appropriate for 8086 real mode code, but not for protected mode or some bank-
switched arrangements. In this instance the -G option is used to specify a method for calculating the
segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the load
address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substituting N for
A, * for / (to represent multiplication), and adding rather than subtracting a constant. The token N is
replaced by the ordinal number of the segment, which is allocated by the linker. For example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number of
segments defined. This would be appropriate when compiling for 80286 protected mode, where these
selectors would represent LDT entries.

7.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile specifies a
file to receive the symbol file. The default file name is l.sym.

7.7.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition to
the standard symbol file, class names associated with each symbol and a segments section which lists
each class name and the range of memory it occupies. This format is recommended if the code is to be
run in conjunction with a debugger. The optional argument symfile specifies a file to receive the symbol
file. The default file name is l.sym.

7.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings). The
default number is 10, but the -J option allows this to be altered.

7.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and paramter areas
in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature can be
disabled with this option.
180

Operation

 7
7.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will cause
undefined symbols to be treated as warnings instead.

7.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at load
time, e.g. when running a .EXE file under DOS or a .PRG file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

7.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating .EXE files to run under DOS.

7.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if the
file name is omitted. The format of the map file is illustrated in Section 7.9 on page 184.

7.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The -N option will cause it to be
sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly except
that the symbols are grouped by either their Space type, or Class type.

7.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

7.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via -P
options. The argument to the -P option consists basically of comma separated sequences thus:

-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load addresses,
and a minimum value. All values may be omitted, in which case a default will apply, depending on
previous values.
HI-TECH C Z80 compiler 181

Linker and Utilities Reference Manual

 7
The minimum value (min) is preceded by a + sign, if present. It sets a minimum value for the link or load
address. The address will be calculated as described below, but if it is less than the minimum then it will
be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects or
classes, or special tokens. If a link address is omitted, the psect’s link address will be derived from the
top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data psect
will be linked (and loaded) at an address which is 100 hex plus the length of the text psect, rounded up
as necessary if the data psect has a RELOC= value associated with it. Similarly, the bss psect will
concatenate with the data psect.

If the load address is omitted entirely, it defaults to the same as the link address. If the slash (/) character
is supplied, but no address is supplied after it, the load address will concatenate with the previous psect,
e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and data
will have a load address starting after the end of text. The bss psect will concatenate with data for both
link and load addresses.

The load address may be replaced with a dot (.) character. This tells the linker to set the load address of
this psect to the same as its link address. The link or load address may also be the name of another
(already linked) psect. This will explicitly concatenate the current psect with the previously specified
psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and loaded at
8000h plus the size of data, and nvram and heap are concatenated with bss. Note here the use of two -P
options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be used in
place of a link or load address, and space will be found in one of the address ranges. For example:

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE. If no
sufficiently large space is available, an error will result. Note that in this case the data psect will still be
assembled into one contiguous block, whereas other psects in the class CODE will be distributed into
182

Operation

 7
the address ranges wherever they will fit. This means that if there are two or more psects in class CODE,
they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any address
ranges specified with the -A option. This allows a range to be specified with the -A option without
knowing in advance how much of the lower part of the range, for example, will be required for other
psects.

7.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map file.
The argument to this option is a string describing the processor.

7.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced by
the linker. Segment information is still included.

7.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places a
limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a LIMIT= flag on a
psect directive).

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h

7.7.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined symbol. This
is useful for linking entirely from libraries, or for linking a module from a library where the ordering has
been arranged so that by default a later module will be linked.

7.7.25 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to map psect
names to Avocet memory identifiers. The avmap file will normally be supplied with the compiler, or
created automatically by the compiler driver as required.
HI-TECH C Z80 compiler 183

Linker and Utilities Reference Manual

 7
7.7.26 -Wnum

The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file, for
values >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9) will
give the most comprehensive warning messages.

7.7.27 -X

Local symbols can be suppressed from a symbol file with this option. Global symbols will always appear
in the symbol file.

7.7.28 -Z

Some local symbols are compiler generated and not of interest in debugging. This option will suppress
from the symbol file all local symbols that have the form of a single alphabetic character, followed by a
digit string. The set of letters that can start a trivial symbol is currently "klfLSu". The -Z option will strip
any local symbols starting with one of these letters, and followed by a digit string.

7.8 Invoking the Linker

The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is generally
useful if the number of arguments to HLINK is large. Even if the list of files is too long to fit on one line,
continuation lines may be included by leaving a backslash (’\’) at the end of the preceding line. In this
fashion, HLINK commands of almost unlimited length may be issued. For example a link command
file called X.LNK and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink <x.lnk

7.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned to
symbols within those psects. The sections in the map file are as follows; first is a copy of the command
line used to invoke the linker. This is followed by the version number of the object code in the first file
linked, and the machine type. This is optionally followed by call graph information, depended on the
184

Map Files

 7
processor and memory model selected. Then are listed all object files that were linked, along with their
psect information. Libraries are listed, with each module within the library. The TOTALS section
summarises the psects from the object files. The SEGMENTS section summarises major memory
groupings. This will typically show RAM and ROM usage. The segment names are derived from the
name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:

-z -Mmap -pvectors=00h,text,strings,const,im2vecs -pbaseram=00h \
 -pramstart=08000h,data/im2vecs,bss/.,stack=09000h -pnvram=bss,heap \
 -oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
 C:\HT-Z80\LIB\z80-sc.lib

Object code version is 2.4
Machine type is Z80

 Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.obj
 vectors 0 0 71
 bss 8000 8000 24
 const FB FB 1 0
 text 72 72 82
hello.obj text F4 F4 7

C:\HT-Z80\LIB\z80-sc.lib
powerup.obj vectors 71 71 1

TOTAL Name Link Load Length
 CLASS CODE
 vectors 0 0 72
 const FB FB 1
 text 72 72 89

 CLASS DATA
 bss 8000 8000 24

SEGMENTS Name Load Length Top Selector

 vectors 000000 0000FC 0000FC 0
 bss 008000 000024 008024 8000

7.9.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within a
HI-TECH C Z80 compiler 185

Linker and Utilities Reference Manual

 7
e been
tains a
eside.

 be
 are the
 that

rs
function. When a compiled stack is used, functions are not re-entrant since the function will use a fixed
area of memory for its local objects (parameters/auto variables). A function called foo, for example, will
use symbols like ?_foo for parameters and ?a_foo for auto variables. Compilers such as the PIC, 6805
and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and medium memory
models. The call graph shows information relating to the placement of function parameters and auto
variables by the linker. A typical call graph may look something like:

Call graph:

*_main size 0,0 offset 0
_init size 2,3 offset 0

_ports size 2,2 offset 5
* _sprintf size 5,10 offset 0
* _putch

INDIRECT 4194
INDIRECT 4194

_function_2 size 2,2 offset 0
_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own local
objects. In the example above, the symbol _main is associated with the function main. It is shown at
the far left of the call graph. This indicates that it is the root of a call tree. The run-time code has the
FNROOT assembler directive that specifies this. The size field after the name indicates the number of
parameters and auto variables, respectively. Here, main() takes no parameters and defines no auto
variables. The offset field is the offset at which the function’s parameters and auto variables hav
placed from the beginning of the area of memory used for this purpose. The run-time code con
FNCONF directive which tells the compiler in which psect parameters and auto variables should r
This memory will be shown in the map file under the name COMMON.

Main() calls a function called init. This function uses a total of two bytes of parameters (it may
two chars or one int; that is not important) and has three bytes of auto variables. These figures
total of bytes of memory consumed by the function. If the function was passed a two-byte int, but
was done via a register, then the two bytes would not be included in this total. Since main() did not use
any of the local object memory, the offset of init()’s memory is still at 0.

The function init itself calls another function called ports. This function uses two bytes of paramete
and another two bytes of auto variables. Since ports() is called by init(), its local variables cannot
be overlapped with those of init()’s, so the offset is 5, which means that ports()’s local objects were
placed immediately after those of init()’s.
186

Map Files

 7

done

s

s local

al
ed, as

 by the

e been

nction
equence
same
nd auto

priate
The function main also calls sprintf(). Since the function sprintf is not active at the same time as
init() or ports(), their local objects can be overlapped and the offset is hence set to 0. Sprintf()
calls a function putch, but this function uses no memory for parameters (the char passed as argument
is apparently done so via a register) or locals, so the size and offset are zero and are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the two
INDIRECT entries in the graph. The number following is the signature value of functions that could
potentially be called by the indirect call. This number is calculated from the parameters and return type
of the functions the pointer can indirectly call. The names of any functions that have this signature value
are listed underneath the INDIRECT entries. Their inclusion does not mean that they were called (there
is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies that this
is the root of another call graph tree. This is an interrupt function which is not called by any code, but
which is automatically invoked when an enabled interrupt occurs. This interrupt routine calls the
function incr(), which is shown shorthand in the graph by the “->” symbol followed by the called
function’s name instead of having that function shown indented on the following line. This is
whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred (*) are those functions which are on a critical path in term
of RAM usage. For example, in the above, (main() is a trivial example) consider the function sprintf.
This uses a large amount of local memory and if you could somehow rewrite it so that it used les
memory, it would reduce the entire program’s RAM usage. The functions init and ports have had
their local memory overlapped with that of sprintf(), so reducing the size of these functions’ loc
memory will have no affect on the program’s RAM usage. Their memory usage could be increas
long as the total size of the memory used by these two functions did not exceed that of sprintf(), with
no additional memory used by the program. So if you have to reduce the amount of RAM used
program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas hav
overlapped (i.e. ?a_foo was placed at the same address as ?_foo, for example), then check to make
sure that you have actually called the function in your program. If the linker has not seen a fu
actually called, then it overlaps these areas of memory since that are not needed. This is a cons
of the linker’s ability to overlap the local memory areas of functions which are not active at the
time. Once the function is called, unique addresses will be assigned to both the parameters a
objects.

If you are writing a routine that calls C code from assembler, you will need to include the appro
assembler directives to ensure that the linker sees the C function being called.
HI-TECH C Z80 compiler 187

Linker and Utilities Reference Manual

 7
7.10 Librarian

The librarian program, LIBR, has the function of combining several object files into a single file known
as a library. The purposes of combining several such object modules are several.

r fewer files to link

r faster access

r uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more symbols
previously known, but not defined, to the linker. Thus modules in a library will be linked only if
required. Since the choice of modules to link is made on the first pass of the linker, and the library is
searched in a linear fashion, it is possible to order the modules in a library to produce special effects
when linking. More will be said about this later.

7.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is maintained
a directory of the modules and symbols in the library. Since this directory is smaller than the sum of the
modules, the linker is speeded up when searching a library since it need read only the directory and not
all the modules on the first pass. On the second pass it need read only those modules which are required,
seeking over the others. This all minimises disk I/O when linking.

It should be noted that the library format is geared exclusively toward object modules, and is not a
general purpose archiving mechanism as is used by some other compiler systems. This has the advantage
that the format may be optimized toward speeding up the linkage process.

7.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

libr options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which affect
the output of the program. k is a key letter denoting the function requested of the librarian (replacing,
extracting or deleting modules, listing modules or symbols), file.lib is the name of the library file to be
operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 7 - 2.

The key letters are listed inTable 7 - 3.
188

Librarian

 7
When replacing or extracting modules, the file.obj arguments are the names of the modules to be
replaced or extracted. If no such arguments are supplied, all the modules in the library will be replaced
or extracted respectively. Adding a file to a library is performed by requesting the librarian to replace it
in the library. Since it is not present, the module will be appended to the library. If the r key is used and
the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it is an
error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols defined
or referenced within (global symbols only are handled by the librarian). As with the r and x key letters,
an empty list of modules means all the modules in the library.

7.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the modules
a.obj, b.obj and c.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and 2.obj from the library file.lib:

LIBR d file.lib a.obj b.obj 2.obj

7.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input if

Table 7 - 2 Librarian Options

Option Effect

-Pwidth specify page width
-W suppress non-fatal errors

Table 7 - 3 Librarian Key Letter Commands

Key Meaning

r Replace modules
d Delete modules
x Extract modules
m List modules
s List modules with symbols
HI-TECH C Z80 compiler 189

Linker and Utilities Reference Manual

 7
no command line arguments are given. If the standard input is attached to the console, LIBR will prompt
for input. Multiple line input may be given by using a backslash as a continuation character on the end
of a line. If standard input is redirected from a file, LIBR will take input from the file, without prompting.
For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the .obj files had been typed on the command line. The libr> prompts
were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

Libr will read input from lib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given to LIBR.

7.10.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard
output. The s keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letter D or U, representing a definition or reference to the symbol
respectively. The -P option may be used to determine the width of the paper for this operation. For
example LIBR -P80 s file.lib will list all modules in file.lib with their global symbols, with the output
formatted for an 80 column printer or display.

7.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the command
line. When updating a library the order of the modules is preserved. Any new modules added to a library
after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module which
references a symbol defined in another module in the same library, the module defining the symbol
should come after the module referencing the symbol.

7.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the -W option was used. In this case all
warning messages will be suppressed.
190

Objtohex

 7
7.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility program OBJTOHEX. This allows
conversion of object files as produced by the linker into a variety of different formats,
including various hex formats. The program is invoked thus:

objtohex options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depending on
whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 7 - 4 on page 191. Where an address is required, the
format is the same as for HLINK:.

Table 7 - 4 Objtohex Options

Option Meaning

-A Produce an ATDOS .ATX output file
-Bbase Produce a binary file with offset of base. Default file name is l.obj
-Cckfile Read a list of checksum specifications from ckfile or standard input
-D Produce a .COD file
-E Produce an MS-DOS .EXE file
-Ffill Fill unused memory with bytes of value fill - default value is 0FFh
-I Produce an Intel HEX file with linear addressed extended records.
-L Pass relocation information into the output file (used with .EXE files)
-M Produce a Motorola HEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for an Atari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file into file
-T Produce a Tektronix HEX file. -TE produces an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-x Create an x.out format file
HI-TECH C Z80 compiler 191

Linker and Utilities Reference Manual

 7
7.11.1 Checksum Specifications

The checksum specification allows automated checksum calculation. The checksum specification takes
the form of several lines, each line describing one checksum. The syntax of a checksum line is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix. Such a
specification says that the bytes at addr1 through to addr2 inclusive should be summed and the sum
placed in the locations where1 through where2 inclusive. For an 8 bit checksum these two addresses
should be the same. For a checksum stored low byte first, where1 should be less than where2, and vice
versa. The +offset is optional, but if supplied, the value offset will be used to initialise the checksum.
Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit checksum
will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH to provide
protection against an all zero rom, or a rom misplaced in memory. A run time check of this checksum
would add the last address of the rom being checksummed into the checksum. For the rom in question,
this should be 1FFFH. The initialization value may, however, be used in any desired fashion.

7.12 Cref

The cross reference list utility CREF is used to format raw cross-reference information produced by the
compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the -CR
option to the compiler. The assembler will generate a raw cross-reference file with a -C option (most
assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line (PIC
assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-reference
files. CREF takes the options listed in Table 7 - 5 on page 193. Each option is described in more detail
in the following paragraphs.

7.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to exclude
any symbols defined in a file whose path name begins with that prefix. For example, -F\ will exclude
any symbols from all files with a path name starting with \.
192

Cref

 7
7.12.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

7.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be printed
on 55 line paper you would use a -L55 option. The default is 66 lines.

7.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard output
and may be redirected in the usual manner. Alternatively outfile may be specified as the output file name.

7.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132 will
format the listing for a 132 column printer. The default is 80 columns.

7.12.6 -Sstoplist

The -S option should have as its argument the name of a file containing a list of symbols not to be listed
in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

7.12.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument to
-X. For example if it was desired to exclude all symbols starting with the character sequence xyz then
the option -Xxyz would be used. If a digit appears in the character sequence then this will match any digit
in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by a digit.

Table 7 - 5 Cref Options

Option Meaning

-Fprefix Exclude symbols from files with a pathname or
filename starting with prefix

-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols listed.
-Xprefix Exclude any symbols starting with the given prefix
HI-TECH C Z80 compiler 193

Linker and Utilities Reference Manual

 7

idth is
or used,
CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied by
invoking CREF with no arguments and typing the command line in response to the cref> prompt. A
backslash at the end of the line will be interpreted to mean that more command lines follow.

7.13 Memmap

MEMMAP has been individualized for each processor. The MEMMAP program that appears in your
\bin directory will conform with the following criteria; XXmap.exe where XX stands for the processor
type. From here on, we will be referring to XXmap.exe as MEMMAP, as to cover all processors.

At the end of compilation and linking, HPD and the command line compiler produce a summary of
memory usage. If, however, the compilation is performed in separate stages and the linker is invoked
explicitly, this memory information is not displayed. The MEMMAP program reads the information
stored in the map file and produces either a summary of psect address allocation or a memory map of
program sections similar to that shown by HPD and the command line compiler.

7.13.1 Using MEMMAP

A command to the memory usage program takes the form:

memmap options file

Options is zero or more MEMMAP options which are listed in Table 7 - 6 on page 194. File is the name

of a map file. Only one map file can be processed by MEMMAP.

7.13.1.1 -P

The default behaviour of MEMMAP is to produce a segment memory map. This output is similar to that
printed by HPD and the command line compiler after compilation and linking. This behaviour can be
changed by using the -P option. This forces a psect usage map to be printed. The output in this case will
be similar to that shown by the HPD’s Memory Usage Map item under the Utility menu or if the -
PSECTMAP option is used with the command line compiler.

7.13.1.2 -Wwid

The width to which addresses are printed can be adjusted by using the -W option. The default w
determined in respect to the processor’s address range. Depending on the type of process

Table 7 - 6 Memmap options

Option Effect

-P Print psect usage map
-Wwid Specifies width to which address are printed
194

Memmap

 7
determines the default width of the printed address, for example a processor with less than or equal to
64k will have a default width of 4. Whereas a processor with greater than 64k may have a default value
of 6 digits.
HI-TECH C Z80 compiler 195

Linker and Utilities Reference Manual

 7
196

 8

r
 your
Lucifer Source Level Debugger

Lucifer is a source level remote debugger for use with the HI-TECH C compilers. It consists of a
program which runs on a host machine (usually MS-DOS or UNIX) and communicates with a Z80-,
Z180-, 64180- or NSC800-based microcontroller system via a serial line.

The host program provides the user interface, including source code display, disassembly, displaying
memory etc. The target system must have logic to read and write memory and registers, and implement
single stepping. With each version of Lucifer a small program is provided which can be compiled and
placed in a ROM in a target system to implement these features. The standard host program is set up to
communicate with this ROM program via a serial line.

8.1 Using Lucifer

To use Lucifer you will need to have the compiler generate a symbol file, with symbol name, line
number and file name symbols included. This can be produced using the ZC -G option. If you use the -
H option you will get a symbol file which can be used by Lucifer, but which does not contain any source
code level information.

You can also use HPDZ to produce HEX and symbol files suitable for use with Lucifer. The LUCIFER
directory contains luctest.prj, a sample project file which you can use as a guide to compiling your own
programs with HPDZ. See the Using HPDZ chapter for more details. The basic option needed is
Options/Source level debug info. Lucifer can be invoked from the Run/Download ... menu item.
Otherwise once you have produced HEX and symbol files, invoke Lucifer as follows:

lucz80 -sSPEED -pCOMn test

If you are using an MS-DOS system, COMn should be COM1 or COM2. Lucifer will access a standard
serial port addressed as either port. For UNIX simply specify the name of the serial port connected to
your target, for example -p/dev/tty006. The default baud rate is 38400 for both MS-DOS and UNIX. The
default serial port is COM1 for MS-DOS and /dev/ttya for UNIX. The -s (speed) and -p (port) options
may be used to access ports other than the default. For UNIX /dev may be left off the device name and
will automatically added, thus -ptty0 and -p/dev/tty0 will access the same device. For example, under
MS-DOS, lucz80 -s9600 -pCOM2 will access COM2 at 9600 baud.

New default speed and port values may be set using the environment variable LUCZ80_ARGS.
LUCZ80_ARGS may specify any mixture of valid Lucifer ‘-’ options except filename options. Fo
example, if you want the default options to be 4800 baud on port COM2, add the following line to
AUTOEXEC.BAT file:

SET LUCZ80_ARGS=-s4800 -pCOM2
HI-TECH C Z80 compiler 197

Lucifer Source Level Debugger

 8
In addition to the speed and port options Lucifer takes two optional arguments which are, in order of
appearance, the name of the symbol file to use and the name of the .HEX or .BIN file to download. If
no download file is specified, Lucifer will automatically search for .SYM, .HEX and .BIN files which
the same base name as the symbol name given. Thus the command: lucz80 test would
automatically locate and use test.sym and test.hex or test.bin. If you do not want to autoload your HEX
or BIN file, give your symbol file a different base name to your HEX file.

When downloading binary files, Lucifer normally prompts for the download address. When
downloading directly from the command line you can override this prompting by adding the option -
Baddr[:end] to the LUCZ80 command line. For example, if you want to download a file test.bin at
address $2000, you could use the command:

lucz80 -b2000 test

The optional :end value is the address at which the download should be terminated. For example, if you
want to load the first $2000 bytes of test.bin from address $4000 to address $6000, use the
command:

lucz80 -b4000:6000 test

Lucifer should announce itself, then attempt to communicate with the target. If successful it prints a
message sent by the target, identifying itself, e.g:

Z80/64180 Lucifer v3.20, RST = CF

Lucifer will then display a prompt : and wait for commands. For a list of commands, type ? and press
return. Note that all commands should be in lower case.

8.2 Symbol names in expressions

Where Lucifer commands take numeric values or addresses as arguments; symbol names, register names
and line numbers may be used. Symbols should be entered in exactly the same case as they were defined
in the source code. Note that Lucifer cannot access auto variables or parameters by name. Where an
expression is required, it may be of the forms in Table 8 - 1 on page 198.

Table 8 - 1 Lucifer expression forms

Expression form Example

symbol_name main
symbol+hexnum barray+20
$hexnum $2000
:linenumber :10
regname A5
198

Lucifer command set

 8

 aren’t
By default, in the b (breakpoint) command any decimal number will be interpreted, as a line number.
However, in the u (unassemble) command any number will be interpreted, by default, as a hex number
representing an address. These assumptions can always be overridden by using the colon or dollar
prefixes. When entering a symbol, it is not necessary to type the underscore prepended by the C
compiler. However, when printing out symbols the debugger will always print the underscore. Any
register name may also be used where a symbol is expected.

8.2.1 Auto Variables and Parameters

Auto variables and parameters cannot be accessed by name with Lucifer. To examine the contents of an
auto variable or parameter, the best approach is to disassemble (with the u command) a line of code
referencing the variable, and dump the corresponding memory location (e.g. sp+4).

8.3 Lucifer command set

Lucifer recognizes the commands listed in Table 8 - 2 on page 200.

8.3.1 The B command: set or display breakpoints

The b command is used to set and display breakpoints. If no expression is supplied after the b command,
a list of all currently set breakpoints will be displayed. If an expression is supplied, a breakpoint will be
set at the line or address specified. If you attempt to set a breakpoint which already exists, or enter an
expression which Lucifer cannot understand, an appropriate error message will be displayed. Note: by
default, any decimal number specified will be interpreted as a line number. If you want to specify an
absolute address, prefix it with a dollar sign. For example:

: b 10
Set breakpoint at _main+$28
:

Breakpoints can also include a semicolon separated list of Lucifer commands, which will be executed
when the breakpoint is encountered. This makes it possible to create breakpoints which stop, display a
value and then restart execution. For example, the command : b 10 @f pi;g creates a breakpoint
which stops, displays the value of global variable pi and then continues execution.

8.3.2 The C command: display instruction at PC

The c command is used to display the assembler instruction and C source line addressed by the current
value of the program counter. This is useful if you have been using other Lucifer commands and
quite sure where in the program the program counter is pointing. For example:

: c
10: printf("answer = %d\n",j);
_main+$22 MOV r0,_j
HI-TECH C Z80 compiler 199

Lucifer Source Level Debugger

 8

8.3.3 The D command: display memory contents

The d command is used to display a hex dump of the contents of memory on the target system. If no
expressions are specified, 16 bytes are dumped from the address reached by the last d command. If one
address is specified, 16 bytes are dumped from the address given. If two addresses are specified, the
contents of memory from the first address to the second address are displayed. Dump addresses given
can be symbols, line numbers, register names or absolute memory addresses.

Table 8 - 2 Lucifer command set

Command Meaning

B [line|addr] Set or display breakpoints
C Display instruction at PC
D [addr [addr]] Display memory contents
E fn|file Examine C source code
G [addr] Commence execution
I Toggle instruction trace mode
L file Load a HEX file
M addr val1 [val2 ...] Modify memory
P Toggle input prompting mode
Q Exit to operating system
R [breakpnt] Remove breakpoints
S Step one line
T Trace one instruction
U [addr] Disassemble machine instructions
W file addr length Upload binary
X [reg1 val1 [reg2 val2 ...]] Examine or change registers
@ type [indirection]expr Display C variables
. [breakpoint] Set a breakpoint and go
; [line] Display from a source line
= Display next page of source
- Display previous page of source
/ [string] Search source file for a string
! command Execute a DOS command
200

Lucifer command set

 8
8.3.4 The E command: examine C source code

The e command is used to examine the C source code of a function or file. If a function name is given,
Lucifer will locate the source file containing the function requested and display from just above the start
of the function. If a file name is given, Lucifer will display from line 1 of the requested file. For example:

: e main
2:
3:int value, result;
4:
5:main()
6:{
7: scanf("%d",&value);
8: result = (value << 1) + 6;
9: printf("result = %d\n",result);
10:}
:

8.3.5 The G command: commence execution

The g command is used to commence execution of code on the target system. If no expression is supplied
after the g command, execution will commence from the current value of PC (the program counter). If
an expression is supplied, execution will commence from the address given. Execution will continue
until a breakpoint is reached, or the user interrupts with control-C. After a breakpoint has been reached,
execution can be continued from the same place using the g, s and t commands.

8.3.6 The I command: toggle instruction trace mode

The i command is used to toggle instruction trace mode. If instruction trace mode is enabled, each
instruction is displayed before it is executed while stepping by entire C lines with the s command. For
example, with instruction trace disabled, step behaves like this:

: s
result = 20
Stepped to
10:}
:

With instruction trace enabled, step will instead behave like this:

: s
_memtest+30H push r4
_memtest+32H mov r0,#04A2H
_memtest+36H push r0
HI-TECH C Z80 compiler 201

Lucifer Source Level Debugger

 8

e-enter
_memtest+38H fcall _printf
_memtest+3CH adds r7,#4
result = 20
Stepped to
10:}
:

Note that the library function printf() was not traced and thus operated properly and at full speed.

8.3.7 The L command: load a hex file

The l command is used to load object files into the target system. Lucifer correctly handles Motorola S-
record format object files, Intel HEX files and binary images.

8.3.8 The M command: modify memory

The m command is used to write one or more values or ascii strings into memory at a specified address.
This command takes the form: m addr val1 [val2 ...] where addr is the address to write to and all
following arguments are values or strings to write to memory. Strings may use either single or double
quotes. For example: : m buf "hello" 13 10 ’world’ 0

8.3.9 The P command: toggle input prompting mode

The p command is used to toggle input prompting. If input prompting is enabled, Lucifer will display a
prompt “Target wants input:” when the target program executes an input function (gets(), scanf(), etc.).
If input prompting is disabled, input prompting is left to the target program.

8.3.10 The Q command: exit to operating system

The q command is used to exit from Lucifer to the operating system. Note: the q command does not stop
the target system (that is, the Lucifer monitor running on the target system), so it is possible to r
Lucifer without re-initializing the target.

8.3.11 The R command: remove breakpoints

The r command is used to remove breakpoints which have been set with the b command. If no arguments
are given the user is prompted for each breakpoint in turn. For example:

: r
Remove _main+$28 ? y
Remove _main+$44 ? n
Remove _test ? n
: r main+$44
Removed breakpoint _main+$44
:
202

Lucifer command set

 8
8.3.12 The S command: step one line

The s command is used to step by one line of C or assembler code. For example:

: s
Stepped to
7: scanf("%d", &value);
: s
Target wants input: 7
Stepped to
8: result = (value << 1) + 6;
: s
Stepped to
9: printf("result = %d\n",result);
: s
result = 20
Stepped to
10:}
:

This is normally implemented by executing several machine instruction single steps, and therefore can
be quite slow. If Lucifer can determine that there are no function calls or control structures (break,
continue, etc.) in the line, it will set a temporary breakpoint on the next line and execute the line at full
speed. When single stepping by machine instructions, the step command will execute subroutine calls
to external and library functions at full speed. This avoids the slow process of single stepping through
complex library routines like printf(). Normal library console I/O works correctly during single
stepping using the s command. Where no line number information is available, such as inside library
routines, the s command becomes an assembler step like the t command.

8.3.13 The T command: trace one instruction

The t command is used to trace one machine instruction on the target. The current value of PC (the
program counter) is used as the address of the instruction to be executed. After the instruction has been
executed, the next instruction and the contents of all registers will be displayed.

8.3.14 The U command: disassemble machine instructions

The u command disassembles object code from the target system’s memory. For example:

: u
9: printf("result = %d\n", result);
_memtest+30H push r4,r5
_memtest+32H mov r0,#04A2H
HI-TECH C Z80 compiler 203

Lucifer Source Level Debugger

 8 e
_memtest+36H push r0
_memtest+38H fcall _printf
_memtest+3CH adds r7,#6

If an expression is supplied, the disassembly commences from the address supplied. If an address is not
supplied, the disassembly commences from the instruction where the last disassembly ended. The
disassembler automatically converts addresses in the object code to symbols if the symbol table for the
program being disassembled is available. If the source code for a C program being disassembled is
available, the C lines corresponding to each group of instructions are also displayed. Note: by default,
any values specified will be interpreted as absolute addresses. If you want to specify a line number,
prefix it with a colon.

8.3.15 The W command: upload binary

The w command is used to upload and write a chunk of target memory as a binary file. This command
takes three arguments: filename, start address and length. The start address and length values are in hex.
For example, if the Lucifer monitor ROM were at $7000 to $7FFF in the target system, it could be
uploaded to a binary file with the command:

: w lucrom.bin 7000 1000
........
Uploaded 4096 (0x1000) bytes to lucrom.bin
:

8.3.16 The X command: examine or change registers

The x command is used to examine and change the contents of the target CPU registers. If no parameters
are given, the registers are displayed without change. To change the contents of a register, two
parameters must be supplied, a valid register name and the new value of the register. After setting a new
register value, the contents of the registers are displayed.

8.3.17 The @ command: display C variables

The @ command is used to examine the contents of memory interpreted as one of the standard C types.
The form of the @ command is: @t/[*]expr where t is the type of the variable to be displayed, * consists
of zero or more indirection operators (“*” or “n*”), and expr is the address of the variable to b
displayed. Table 8 - 3 on page 205, shows the available @ command variants.

For example, to display a long variable longvar in hex: @lx longvar

To display a character, pointed to by a pointer cptr: @c *cptr

To de-reference ihandle: a pointer to a pointer to an unsigned int: @iu **ihandle
204

Lucifer command set

 8

alue of
ts with

d even
, the
After displaying the variable, the current address is advanced by the size of the type displayed. This,
makes it possible to step through arrays by repeatedly pressing return. On-line help for the @ command
may be obtained by entering ?@ at the “:” prompt.

8.3.18 The . command: set a breakpoint and go

The . command is used to set a temporary breakpoint and resume execution from the current v
PC (the program counter). Execution continues until any breakpoint is reached or the user interrup
control-C, then the temporary breakpoint is removed. Note: the temporary breakpoint is remove
if execution stops at a different breakpoint or is interrupted. If no breakpoint address is specified.
command will display a list of active breakpoints.

: . 10
Target wants input: 7
result = 20
Breakpoint
10:}
main+$28 RET
:

Table 8 - 3 Lucifer @ command variants

Command Type Displays

@c char character and value
@cu unsigned char decimal
@cx unsigned char hexadecimal
@co unsigned char octal
@i int decimal
@iu unsigned int decimal
@ix unsigned int hexadecimal
@io unsigned int octal
@l long decimal
@lu unsigned long decimal
@lx unsigned long hexadecimal
@lo unsigned long octal
@f float decimal
@np near pointer symbol+offset
@p pointer symbol+offset
@s string string chars
HI-TECH C Z80 compiler 205

Lucifer Source Level Debugger

 8
8.3.19 The ; command: display from a source line

The ; command is used to display 10 lines of source code from a specified position in a source file. If
the line number is omitted, the last page of source code displayed will be re-displayed. For example:

: ; 4
4:
5: main()
6: {
7: scanf("%d",&value);
8: result = (value << 1) + 6;
9: printf("result = %d\n",result);
10:}

8.3.20 The = command: display next page of source

The = command is used to display the next 10 lines of source code from the current file. For example,
if the last source line displayed was line 7, = will display 10 lines starting from line 8.

8.3.21 The - command: display previous page of source

The - command is used to display the previous 10 lines of source code from the current file. For example,
if the last page displayed started at line 15, - will display 10 lines starting from line 5.

8.3.22 The / command: search source file for a string

The / command is used to search the current source file for occurrences of a sequence of characters. Any
text typed after the / is used to search the source file. The first source line containing the string specified
is displayed. If no text is typed after the /, the previous search string will be used. Each string search
starts from the point where the previous one finished, allowing the user to step through a source file
finding all occurrences of a string.

: /printf
10: printf("Enter a number:");
: /
14: printf("Result = %d\n",answer);
: /
Can’t find printf
:

8.3.23 The ! command: execute a DOS command

The ! command is used to execute an operating system shell command line without exiting from Lucifer.
Any text typed after the ! is passed through to the shell without modification.
206

User input and output with Lucifer

 8
8.3.24 Other commands

In addition to the commands listed above, Lucifer will interpret any valid decimal number typed as a
source line number and attempt to display the C source code for that line.

Pressing return without entering a command will result in re-execution of the previous command. In
most cases the command resumes where the previous one left off. For example, if the previous command
was d 2000, pressing return will have the same effect as the command d 2010.

If return is pressed after a breakpoint or . command has executed, it is equivalent to disassembling from
the breakpoint address.

8.4 User input and output with Lucifer

The standard versions of the console I/O routines putch(), getch(), getche() and init_uart() are
configured to work automatically with Lucifer. Code which is downloaded under Lucifer may use the
standard I/O routines like printf() without any library modifications. Once you have finished debugging
your code, you will need to insert into the library console, I/O routines suitable for your hardware. You
can use the getch.c file in the sources directory as a starting point.

8.5 Installing Lucifer on a target

In order to use Lucifer on your target system, you will need to compile the Lucifer monitor and place it
in a ROM. If your Z80 system already has a monitor in ROM, it is also possible to download the Lucifer
target code into RAM. In most cases you will be able to use the Lucifer monitor program supplied
without much modification.

8.5.1 Modifying the target code

Normally the only changes required will be the serial port drivers and the single step code.

Three versions of the target code are supplied; jtarget.c which is configured for the JED STD-801 board,
ztarget.c which is configured for use with a generic Z80 with a Z80-SIO serial port, and targ180.c which
is set up for use with a Z180 or 64180 processor, using one of the on-board serial ports.

There are extensive comments in these source files documenting any changes that might be needed for
different hardware.
HI-TECH C Z80 compiler 207

Lucifer Source Level Debugger

 8
208

 9
Error Messages

This chapter lists all possible error messages from the HI-TECH C compiler, with an explanation of each
one. The name of the applications that could have produced the error are listed in brackets opposite the
error message. The tutorial chapter describes the function of each application.

’.’ expected after ’..’ (Parser)
The only context in which two successive dots may appear is as part of the ellipsis symbol, which must
have 3 dots.

’case’ not in switch (Parser)
A case statement has been encountered but there is no enclosing switch statement. A case statement may
only appear inside the body of a switch statement.

’default’ not in switch (Parser)
A label has been encountered called "default" but it is not enclosed by a switch statement. The label
"default" is only legal inside the body of a switch statement.

(expected (Parser)
An opening parenthesis was expected here. This must be the first token after a while, for, if, do or asm
keyword.

) expected (Parser)
A closing parenthesis was expected here. This may indicate you have left out a parenthesis in an
expression, or you have some other syntax error.

*: no match (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

, expected (Parser)
A comma was expected here. This probably means you have left out the comma between two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and has
thus been interpreted as an identifier.

-s, too few values specified in * (Preprocessor)
The list of values to the preprocessor -S option is incomplete. This should not happen if the preprocessor
is being invoked by the compiler driver or HPD.

-s, too many values, * unused (Preprocessor)
There were too many values supplied to a -S preprocessor option.
HI-TECH C Z80 compiler 209

Error Messages

 9

ck for

rmally

uses are
... illegal in non-prototype arg list (Parser)
The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not appear on
its own, nor may it appear after argument names that do not have types.

: expected (Parser)
A colon is missing in a case label, or after the keyword "default". This often occurs when a semicolon
is accidentally typed instead of a colon.

; expected (Parser)
A semicolon is missing here. The semicolon is used as a terminator in many kinds of statements, e.g. do
.. while, return etc.

= expected (Code Generator, Assembler)
An equal sign was expected here.

#define syntax error (Preprocessor)
A macro definition has a syntax error. This could be due to a macro or formal parameter name that does
not start with a letter or a missing closing parenthesis (’)’).

#elif may not follow #else (Preprocessor)
If a #else has been used after #if, you cannot then use a #elif in the same conditional block.

#elif must be in an #if (Preprocessor)
#elif must be preceded by a matching #if line. If there is an apparently corresponding #if line, che
things like extra #endif’s, or improperly terminated comments.

#else may not follow #else (Preprocessor)
There can be only one #else corresponding to each #if.

#else must be in an #if (Preprocessor)
#else can only be used after a matching #if.

#endif must be in an #if (Preprocessor)
There must be a matching #if for each #endif. Check for the correct number of #ifs.

#error: * (Preprocessor)
This is a programmer generated error; there is a directive causing a deliberate error. This is no
used to check compile time defines etc.

#if ... sizeof() syntax error (Preprocessor)
The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable ca
mismatched parentheses and similar things.
210

 9
#if ... sizeof: bug, unknown type code * (Preprocessor)
The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a malformed
type specifier.

#if ... sizeof: illegal type combination (Preprocessor)
The preprocessor found an illegal type combination in the argument to sizeof() in a #if expression.
Illegal combinations include such things as "short long int".

#if bug, operand = * (Preprocessor)
The preprocessor has tried to evaluate an expression with an operator it does not understand. This is an
internal error.

#if sizeof() error, no type specified (Preprocessor)
Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to sizeof()
in a preprocessor expression must be a valid simple type, or pointer to a simple type.

#if sizeof, unknown type * (Preprocessor)
An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate sizeof() with
basic types, or pointers to basic types.

#if value stack overflow (Preprocessor)
The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expression -
it probably contains too many parenthesized subexpressions.

#if, #ifdef, or #ifndef without an argument (Preprocessor)
The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if should
be an expression, while the argument to #ifdef or #ifndef should be a single name.

#include syntax error (Preprocessor)
The syntax of the filename argument to #include is invalid. The argument to #include must be a valid
file name, either enclosed in double quotes ("") or angle brackets (< >). For example:

#include "afile.h"
#include <otherfile.h>

Spaces should not be included, and the closing quote or bracket must be present. There should be
nothing else on the line.

#included file * was converted to lower case (Preprocessor)
The #include file name had to be converted to lowercase before it could be opened.

] expected (Parser)
A closing square bracket was expected in an array declaration or an expression using an array index.
HI-TECH C Z80 compiler 211

Error Messages

 9
{ expected (Parser)
An opening brace was expected here.

} expected (Parser)
A closing brace was expected here.

a parameter may not be a function (Parser)
A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has been
omitted from the declaration.

absolute expression required (Assembler)
An absolute expression is required in this context.

add_reloc - bad size (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

ambiguous format name ’*’ (Cromwell)
The output format specified to Cromwell is ambiguous.

argument * conflicts with prototype (Parser)
The argument specified (argument 1 is the left most argument) of this function declaration does not agree
with a previous prototype for this function.

argument -w* ignored (Linker)
The argument to the linker option -w is out of range. For warning levels, the range is -9 to 9. For the map
file width, the range is greater than or equal to 10.

argument list conflicts with prototype (Parser)
The argument list in a function definition is not the same as a previous prototype for that function. Check
that the number and types of the arguments are all the same.

argument redeclared: * (Parser)
The specified argument is declared more than once in the same argument list.

argument too long (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

arithmetic overflow in constant expression (Code Generator)
A constant expression has been evaluated by the code generator that has resulted in a value that is too
big for the type of the expression, e.g. trying to store the value 256 in a "char".

array dimension on * ignored (Preprocessor)
An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed.
212

 9
array dimension redeclared (Parser)
An array dimension has been declared as a different non-zero value from its previous declaration. It is
acceptable to redeclare the size of an array that was previously declared with a zero dimension, but not
otherwise.

array index out of bounds (Parser)
An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array.

assertion (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

assertion failed: * (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

attempt to modify const object (Parser)
Objects declared "const" may not be assigned to or modified in any other way.

auto variable * should not be qualified (Parser)
An auto variable should not have qualifiers such as "near" or "far" associated with it. Its storage class is
implicitly defined by the stack organization.

bad #if ... defined() syntax (Preprocessor)
The defined() pseudo-function in a preprocessor expression requires its argument to be a single name.
The name must start with a letter. It should be enclosed in parentheses.

bad ’-p’ format (Linker)
The "-P" option given to the linker is malformed.

bad -a spec: * (Linker)
The format of a -A specification, giving address ranges to the linker, is invalid. The correct format is:

-Aclass=low-high

where class is the name of a psect class, and low and high are hex numbers.

bad -m option: * (Code Generator)
The code generator has been passed a -M option that it does not understand. This should not happen if
it is being invoked by a standard compiler driver.

bad -q option * (Parser)
The first pass of the compiler has been invoked with a -Q option, to specify a type qualifier name, that
is badly formed.
HI-TECH C Z80 compiler 213

Error Messages

 9
bad arg * to tysize (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad arg to im (Assembler)
The opcode "IM" only takes the constants 0, 1 or 2 as an argument.

bad bconfloat - * (Code Generator)
This is an internal code generator error. Contact HI-TECH technical support with full details of the code
that caused this error.

bad bit number (Assembler, Optimiser)
A bit number must be an absolute expression in the range 0-7.

bad bitfield type (Parser)
A bitfield may only have a type of int.

bad character const (Parser, Assembler, Optimiser)
This character constant is badly formed.

bad character in extended tekhex line * (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad checksum specification (Linker)
A checksum list supplied to the linker is syntatically incorrect.

bad combination of flags (Objtohex)
The combination of options supplied to objtohex is invalid.

bad complex range check (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad complex relocation (Linker)
The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means a corrupted object file.

bad confloat - * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad conval - * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad dimensions (Code Generator)
The code generator has been passed a declaration that results in an array having a zero dimension.

bad dp/nargs in openpar: c = * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
214

 9
bad element count expr (Code Generator)
There is an error in the intermediate code. Try re-installing the compiler from the distribution disks, as
this could be caused by a corrupted file.

bad gn (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad high address in -a spec (Linker)
The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad int. code (Code Generator)
The code generator has been passed input that is not syntatically correct.

bad load address in -a spec (Linker)
The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad low address in -a spec (Linker)
The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad min (+) format in spec (Linker)
The minimum address specification in the linker’s -p option is badly formatted.

bad mod ’+’ for how = * (Code Generator)
Internal error - Contact HI-TECH.

bad non-zero node in call graph (Linker)
The linker has encountered a top level node in the call graph that is referenced from lower down in the
call graph. This probably means the program has indirect recursion, which is not allowed when using a
compiled stack.

bad object code format (Linker)
The object code format of this object file is invalid. This probably means it is either truncated, corrupted,
or not a HI-TECH object file.

bad op * to revlog (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad op * to swaplog (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
HI-TECH C Z80 compiler 215

Error Messages

 9
bad op: "*" (Code Generator)
This is caused by an error in the intermediate code file. You may have run out of disk space for temporary
files.

bad operand (Optimiser)
This operand is invalid. Check the syntax.

bad origin format in spec (Linker)
The origin format in a -p option is not a validly formed decimal, octal or hex number. A hex number
must have a trailing H.

bad overrun address in -a spec (Linker)
The overrun address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad pragma * (Code Generator)
The code generator has been passed a "pragma" directive that it does not understand.

bad record type * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

bad relocation type (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad repeat count in -a spec (Linker)
The repeat count given in a -A specification is invalid: it should be a valid decimal number.

bad ret_mask (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad segment fixups (Objtohex)
This is an obscure message from objtohex that is not likely to occur in practice.

bad segspec * (Linker)
The segspec option (-G) to the linker is invalid. The correct form of a segspec option is along the
following lines:

-Gnxc+o

where n stands for the segment number, x is a multiplier symbol, c is a constant (multiplier) and o is a
constant offset. For example the option

-Gnx4+16

would assign segment selectors starting from 16, and incrementing by 4 for each segment, i.e. in the
order 16, 20, 24 etc.
216

 9
bad size in -s option (Linker)
The size part of a -S option is not a validly formed number. The number must be a decimal, octal or hex
number. A hex number needs a trailing H, and an octal number a trailing O. All others are assumed to
be decimal.

bad size in index_type (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad size list (Parser)
The first pass of the compiler has been invoked with a -Z option, specifying sizes of types, that is badly
formed.

bad storage class (Code Generator)
The storage class "auto" may only be used inside a function. A function parameter may not have any
storage class specifier other than "register". If this error is issued by the code generator, it could mean
that the intermediate code file is invalid. This could be caused by running out of disk space.

bad string * in psect pragma (Code Generator)
The code generator has been passed a "pragma psect" directive that has a badly formed string. "Pragma
psect" should be followed by something of the form "oldname=newname".

bad sx (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad u usage (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad variable syntax (Code Generator)
There is an error in the intermediate code file. This could be caused by running out of disk space for
temporary files.

bad which * after i (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

binary digit expected (Parser)
A binary digit was expected. The format for a binary number is 0Bxxx where xxx is a string containing
zeroes and/or ones, e.g.

0B0110

bit field too large (* bits) (Code Generator)
The maximum number of bits in a bit field is the same as the number of bits in an "int".

bit range check failed * (Linker)
The bit addressing was out of range.
HI-TECH C Z80 compiler 217

Error Messages

 9

ware
de that
rupt
bitfield comparison out of range (Code Generator)
This is the result of comparing a bitfield with a value when the value is out of range of the bitfield. For
example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range from
0 to 3,

bug: illegal __ macro * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

call depth exceeded by * (Linker)
The call graph shows that functions are nested to a depth greater than specified.

can’t allocate memory for arguments (Preprocessor, Parser)
The compiler could not allocate any more memory. Try increasing the size of available memory.

can’t allocate space for port variables: * (Code Generator)
"Port" variables may only be declared "extern" or have an absolute address associated via the "@
address" construct. They may not be declared in such a way that would require the compiler to allocate
space for them.

can’t be both far and near (Parser)
It is illegal to qualify a type as both far and near.

can’t be long (Parser)
Only "int" and "float" can be qualified with "long". Thus combinations like "long char" are illegal.

can’t be register (Parser)
Only function parameters or auto (local) variables may be declared "register".

can’t be short (Parser)
Only "int" can be modified with short. Thus combinations like "short float" are illegal.

can’t be unsigned (Parser)
There is no such thing as an unsigned floating point number.

can’t call an interrupt function (Parser)
A function qualified "interrupt" can’t be called from other functions. It can only be called by a hard
(or software) interrupt. This is because an interrupt function has special function entry and exit co
is appropriate only for calling from an interrupt. An "interrupt" function can call other non-inter
functions.

can’t create * (Code Generator, Assembler, Linker, Optimiser)
The named file could not be created. Check that all directories in the path are present.
218

 9
can’t create cross reference file * (Assembler)
The cross reference file could not be created. Check that all directories are present. This can also be
caused by the assembler running out of memory.

can’t create temp file (Linker)
The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP (and
TMP) and verify it points to a directory that exists, and that there is space available on that drive. For
example, AUTOEXEC.BAT should have something like:

SET TEMP=C:\TEMP

where the directory C:\TEMP exists.

can’t create temp file * (Code Generator)
The compiler could not create the temporary file named. Check that all the directories in the file path
exist.

can’t enter abs psect (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

can’t find op (Assembler, Optimiser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

can’t find space for psect * in segment * (Linker)
The named psect cannot be placed in the specified segment. This either means that the memory
associated with the segment has been filled, or that the psect cannot be positioned in any of the available
gaps in the memory. Split large functions (for CODE segements) in several smaller functions and ensure
that the optimizers are being used.

can’t generate code for this expression (Code Generator)
This expression is too difficult for the code generator to handle. Try simplifying the expression, e.g.
using a temporary variable to hold an intermediate result.

can’t have ’port’ variable: * (Code Generator)
The qualifier "port" can be used only with pointers or absolute variables. You cannot define a port
variable as the compiler does not allocate space for port variables. You can declare an external port
variable.

can’t have ’signed’ and ’unsigned’ together (Parser)
The type modifiers signed and unsigned cannot be used together in the same declaration, as they have
opposite meaning.

can’t have an array of bits or a pointer to bit (Parser)
It is not legal to have an array of bits, or a pointer to bit.
HI-TECH C Z80 compiler 219

Error Messages

 9

. The
es are

n the
can’t have array of functions (Parser)
You can’t have an array of functions. You can however have an array of pointers to functions
correct syntax for an array of pointers to functions is "int (* arrayname[])();". Note that parenthes
used to associate the star (*) with the array name before the parentheses denoting a function.

can’t initialize arg (Parser)
A function argument can’t have an initialiser. The initialisation of the argument happens whe
function is called and a value is provided for the argument by the calling function.

can’t mix proto and non-proto args (Parser)
A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration list
before the start of the function body).

can’t open (Linker)
A file can’t be opened - check spelling.

can’t open * (Code Generator, Assembler, Optimiser, Cromwell)
The named file could not be opened. Check the spelling and the directory path. This can also be caused
by running out of memory.

can’t open avmap file * (Linker)
A file required for producing Avocet format symbol files is missing. Try re-installing the compiler.

can’t open checksum file * (Linker)
The checksum file specified to objtohex could not be opened. Check spelling etc.

can’t open command file * (Preprocessor, Linker)
The command file specified could not be opened for reading. Check spelling!

can’t open error file * (Linker)
The error file specified using the -e option could not be opened.

can’t open include file * (Assembler)
The named include file could not be opened. Check spelling. This can also be caused by running out of
memory, or running out of file handles.

can’t open input file * (Preprocessor, Assembler)
The specified input file could not be opened. Check the spelling of the file name.

can’t open output file * (Preprocessor, Assembler)
The specified output file could not be created. This could be because a directory in the path name does
not exist.
220

 9

 of the
osed in

er scalar
can’t reopen * (Parser)
The compiler could not reopen a temporary file it had just created.

can’t seek in * (Linker)
The linker can’t seek in the specified file. Make sure the output file is a valid filename.

can’t take address of register variable (Parser)
A variable declared "register" may not have storage allocated for it in memory, and thus it is illegal to
attempt to take the address of it by applying the "&" operator.

can’t take sizeof func (Parser)
Functions don’t have sizes, so you can’t take use the "sizeof" operator on a function.

can’t take sizeof(bit) (Parser)
You can’t take sizeof a bit value, since it is smaller than a byte.

can’t take this address (Parser)
The expression which was the object of the "&" operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined.

can’t use a string in an #if (Preprocessor)
The preprocessor does not allow the use of strings in #if expressions.

cannot get memory (Linker)
The linker is out of memory! This is unlikely to happen, but removing TSR’s etc. is the cure.

cannot open (Linker)
A file cannot be opened - check spelling.

cannot open include file * (Preprocessor)
The named include file could not be opened for reading by the preprocessor. Check the spelling
filename. If it is a standard header file, not in the current directory, then the name should be encl
angle brackets (<>) not quotes.

cast type must be scalar or void (Parser)
A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is eith
(i.e. not an array or a structure) or the type "void".

char const too long (Parser)
A character constant enclosed in single quotes may not contain more than one character.

character not valid at this point in format specifier (Parser)
The printf() style format specifier has an illegal character.
HI-TECH C Z80 compiler 221

Error Messages

 9
checksum error in intel hex file *, line * (Cromwell)
A checksum error was found at the specified line in the specified Intel hex file. The file may have been
corrupted.

circular indirect definition of symbol * (Linker)
The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

class * memory space redefined: */* (Linker)
A class has been defined in two different memory spaces. Either rename one of the classes or, if they are
the same class, place them in the same memory space.

close error (disk space?) (Parser)
When the compiler closed a temporary file, an error was reported. The most likely cause of this is that
there was insufficient space on disk for the file.

common symbol psect conflict: * (Linker)
A common symbol has been defined to be in more than one psect.

complex relocation not supported for -r or -l options yet (Linker)
The linker was given a -R or -L option with file that contain complex relocation. This is not yet
supported.

conflicting fnconf records (Linker)
This is probably caused by multiple run-time startoff module. Check the linker arguments, or "Object
Files..." in HPD.

constant conditional branch (Code Generator)
A conditional branch (generated by an "if" statement etc.) always follows the same path. This may
indicate an expression with missing or badly placed parentheses, causing the evaluation to yield a value
different to what you expected, or it may be because you have written something like "while(1)". To
produce an infinite loop, use "for(;;)".

constant conditional branch: possible use of = instead of == (Code Generator)
There is an expression inside an if or other conditional construct, where a constant is being assigned to
a variable. This may mean you have inadvertently used an assignment (=) instead of a compare (==).

constant expression required (Parser)
In this context an expression is required that can be evaluated to a constant at compile time.

constant left operand to ? (Code Generator)
The left operand to a conditional operator (?) is constant, thus the result of the tertiary operator ?: will
always be the same.
222

 9
constant operand to || or && (Code Generator)
One operand to the logical operators || or && is a constant. Check the expression for missing or badly
placed parentheses.

constant relational expression (Code Generator)
There is a relational expression that will always be true or false. This may be because e.g. you are
comparing an unsigned number with a negative value, or comparing a variable with a value greater than
the largest number it can represent.

control line * within macro expansion (Preprocessor)
A preprocessor control line (one starting with a #) has been encountered while expanding a macro. This
should not happen.

declaration of * hides outer declaration (Parser)
An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended.

declarator too complex (Parser)
This declarator is too complex for the compiler to handle. Examine the declaration and find a way to
simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

default case redefined (Parser)
There is only allowed to be one "default" label in a switch statement. You have more than one.

deff not supported in cp/m version (Assembler)
The CP/M hosted assembler does not support floating point.

def[bmsf] in text psect (Optimiser)
The assembler file supplied to the optimizer is invalid.

degenerate signed comparison (Code Generator)
There is a comparision of a signed value with the most negative value possible for this type, such that
the comparision will always be true or false. E.g. char c;

if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

degenerate unsigned comparison (Code Generator)
There is a comparision of an unsigned value with zero, which will always be true or false. E.g.

unsigned char c;
if(c >= 0)
HI-TECH C Z80 compiler 223

Error Messages

 9

 or

mber,
 with

ned a

 point

ap file
will always be true, because an unsigned value can never be less than zero.

delete what ? (Libr)
The librarian requires one or more modules to be listed for deletion when using the ’d’ key.

did not recognize format of input file (Cromwell)
The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
HI-TECH.

digit out of range (Parser, Assembler, Optimiser)
A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal nu
or hex digits A-F in a decimal number. An octal number is denoted by the digit string commencing
a zero, while a hex number starts with "0X" or "0x".

dimension required (Parser)
Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assig
value. All succeeding dimensions must be present.

direct range check failed * (Linker)
The direct addressing was out of range.

directive not recognized (Assembler)
An assembler directive is unrecognized. Check spelling.

divide by zero in #if, zero result assumed (Preprocessor)
Inside a #if expression, there is a division by zero which has been treated as yielding zero.

division by zero (Code Generator)
A constant expression that was being evaluated involved a division by zero.

double float argument required (Parser)
The printf format specifier corresponding to this argument is %f or similar, and requires a floating
expression. Check for missing or extra format specifiers or arguments to printf.

duplicate -d or -h flag (Linker)
The a symbol file name has been specified to the linker for a second time.

duplicate -m flag (Linker)
The linker only likes to see one -m flag, unless one of them does not specify a file name. Two m
names are more than it can handle!

duplicate case label (Code Generator)
There are two case labels with the same value in this switch statement.
224

 9
duplicate label * (Parser)
The same name is used for a label more than once in this function. Note that the scope of labels is the
entire function, not just the block that encloses a label.

duplicate qualifier (Parser)
There are two occurrences of the same qualifier in this type specification. This can occur either directly
or through the use of a typedef. Remove the redundant qualifier.

duplicate qualifier key * (Parser)
This qualifier key (given via a -Q option) has been used twice.

duplicate qualifier name * (Parser)
A duplicate qualifier name has been specified to P1 via a -Q option. This should not occur if the standard
compiler drivers are used.

end of file within macro argument from line * (Preprocessor)
A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument started.

end of string in format specifier (Parser)
The format specifier for the printf() style function is malformed.

end statement inside include file or macro (Assembler)
An END statement was found inside an include file or a macro.

entry point multiply defined (Linker)
There is more than one entry point defined in the object files given the linker.

enum tag or { expected (Parser)
After the keyword "enum" must come either an identifier that is or will be defined as an enum tag, or an
opening brace.

eof in #asm (Preprocessor)
An end of file has been encountered inside a #asm block. This probably means the #endasm is missing
or misspelt.

eof in comment (Preprocessor)
End of file was encountered inside a comment. Check for a missing closing comment flag.

eof inside conditional (Assembler)
END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

eof inside macro def’n (Assembler)
End-of-file was encountered while processing a macro definition. This means there is a missing "endm"
directive.
HI-TECH C Z80 compiler 225

Error Messages

 9
eof on string file (Parser)
P1 has encountered an unexpected end-of-file while re-reading its file used to store constant strings
before sorting and merging. This is most probably due to running out of disk space. Check free disk
space.

error closing output file (Code Generator, Optimiser)
The compiler detected an error when closing a file. This most probably means there is insufficient disk
space.

error dumping * (Cromwell)
Either the input file to Cromwell is of an unsupported type or that file cannot be dumped to the screen.

error in format string (Parser)
There is an error in the format string here. The string has been interpreted as a printf() style format string,
and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at run time.

evaluation period has expired (Driver)
The evaluation period for this compiler has expired. Contact HI-TECH to purchase a full licence.

expand - bad how (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

expand - bad which (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

expected ’-’ in -a spec (Linker)
There should be a minus sign (-) between the high and low addresses in a -A spec, e.g.

-AROM=1000h-1FFFh

exponent expected (Parser)
A floating point constant must have at least one digit after the "e" or "E".

expression error (Code Generator, Assembler, Optimiser)
There is a syntax error in this expression, OR there is an error in the intermediate code file. This could
be caused by running out of disk space.

expression generates no code (Code Generator)
This expression generates no code. Check for things like leaving off the parentheses in a function call.

expression stack overflow at op * (Preprocessor)
Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.
226

 9

 or split

ts the
nters

ve the
 lead to
vious
always
expression syntax (Parser)
This expression is badly formed and cannot be parsed by the compiler.

expression too complex (Parser)
This expression has caused overflow of the compiler’s internal stack and should be re-arranged
into two expressions.

external declaration inside function (Parser)
A function contains an "extern" declaration. This is legal but is invariably A Bad Thing as it restric
scope of the function declaration to the function body. This means that if the compiler encou
another declaration, use or definition of the extern object later in the same file, it will no longer ha
earlier declaration and thus will be unable to check that the declarations are consistent. This can
strange behaviour of your program or signature errors at link time. It will also hide any pre
declarations of the same thing, again subverting the compiler’s type checking. As a general rule,
declare "extern" variables and functions outside any other functions.

fast interrupt can’t be used in large model (Code Generator)
The large model (bank switched) does not support fast interrupts, as the alternate register set is used for
bank switching.

field width not valid at this point (Parser)
A field width may not appear at this point in a printf() type format specifier.

file name index out of range in line no. record (Cromwell)
The .COD file has an invalid format in the specified record.

filename work buffer overflow (Preprocessor)
A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

fixup overflow in expression * (Linker)
The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
For example this will occur if a byte size object is initialized with an address that is bigger than 255. This
error occurred in a complex expression.

fixup overflow referencing * (Linker)
The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
For example this will occur if a byte size object is initialized with an address that is bigger than 255.

flag * unknown (Assembler)
This option used on a "PSECT" directive is unknown to the assembler.
HI-TECH C Z80 compiler 227

Error Messages

 9
float param coerced to double (Parser)
Where a non-prototyped function has a parameter declared as "float", the compiler converts this into a
"double float". This is because the default C type conversion conventions provide that when a floating
point number is passed to a non-prototyped function, it will be converted to double. It is important that
the function declaration be consistent with this convention.

floating exponent too large (Assembler)
The exponent of the floating point number is too large. For the Z80 the largest floating point exponent
is decimal 19.

floating number expected (Assembler)
The arguments to the "DEFF" pseudo-op must be valid floating point numbers.

formal parameter expected after # (Preprocessor)
The stringization operator # (not to be confused with the leading # used for preprocessor control lines)
must be followed by a formal macro parameter. If you need to stringize a token, you will need to define
a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

function * appears in multiple call graphs: rooted at * (Linker)
This function can be called from both main line code and interrupt code. Use the reentrant keyword, if
this compiler supports it, or recode to avoid using local variables or parameters, or duplicate the
function.

function * argument evaluation overlapped (Linker)
A function call involves arguments which overlap between two functions. This could occur with a call
like:

void fn1(void) { fn3(7, fn2(3), fn2(9)); /* Offending call */ } char fn2(char fred) { return fred +
fn3(5,1,0); } char fn3(char one, char two, char three) { return one+two+three; }

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3. The
structure should be modified to prevent this.

function * is never called (Linker)
This function is never called. This may not represent a problem, but space could be saved by removing
it. If you believe this function should be called, check your source code.

function body expected (Parser)
Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow.
228

 9
function declared implicit int (Parser)
Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type "int", with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type and
arguments will be different from the earlier implicit declaration, causing a compiler error. The solution
is to ensure that all functions are defined or at least declared before use, preferably with prototyped
parameters. If it is necessary to make a forward declaration of a function, it should be preceded with the
keywords "extern" or "static" as appropriate.

function does not take arguments (Parser, Code Generator)
This function has no parameters, but it is called here with one or more arguments.

function is already ’extern’; can’t be ’static’ (Parser)
This function was already declared extern, possibly through an implicit declaration. It has now been
redeclared static, but this redeclaration is invalid. If the problem has arisen because of use before
definition, either move the definition earlier in the file, or place a static forward definition earlier in the
file, e.g. static int fred(void);

function or function pointer required (Parser)
Only a function or function pointer can be the subject of a function call. This error can be produced when
an expression has a syntax error resulting in a variable or expression being followed by an opening
parenthesis ("(") which denotes a function call.

functions can’t return arrays (Parser)
A function can return only a scalar (simple) type or a structure. It cannot return an array.

functions can’t return functions (Parser)
A function cannot return a function. It can return a function pointer. A function returning a pointer to a
function could be declared like this: int (* (name()))(). Note the many parentheses that are necessary to
make the parts of the declaration bind correctly.

functions nested too deep (Code Generator)
This error is unlikely to happen with C code, since C cannot have nested functions!

garbage after operands (Assembler)
There is something on this line after the operands other than a comment. This could indicate an operand
error.

garbage on end of line (Assembler)
There were non-blank and non-comment characters after the end of the operands for this instruction.
Note that a comment must be started with a semicolon.

hex digit expected (Parser)
After "0x" should follow at least one of the hex digits 0-9 and A-F or a-f.
HI-TECH C Z80 compiler 229

Error Messages

 9

tion.

gnized
s are:

operly
I/O error reading symbol table (Cromwell)
Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file.

ident records do not match (Linker)
The object files passed to the linker do not have matching ident records. This means they are for different
processor types.

identifier expected (Parser)
Inside the braces of an "enum" declaration should be a comma-separated list of identifiers.

identifier redefined: * (Parser)
This identifier has already been defined. It cannot be defined again.

identifier redefined: * (from line *) (Parser)
This identifier has been defined twice. The ’from line’ value is the line number of the first declara

illegal # command * (Preprocessor)
The preprocessor has encountered a line starting with #, but which is not followed by a reco
control keyword. This probably means the keyword has been misspelt. Legal control keyword
assert, asm, define, elif, else, endasm, endif, error, if, ifdef, ifndef, include, line, pragma, undef.

illegal #if line (Preprocessor)
There is a syntax error in the expression following #if. Check the expression to ensure it is pr
constructed.

illegal #undef argument (Preprocessor)
The argument to #undef must be a valid name. It must start with a letter.

illegal ’#’ directive (Preprocessor, Parser)
The compiler does not understand the "#" directive. It is probably a misspelling of a pre-processor "#"
directive.

illegal character (* decimal) in #if (Preprocessor)
The #if expression had an illegal character. Check the line for correct syntax.

illegal character * (Parser)
This character is illegal.

illegal character * in #if (Preprocessor)
There is a character in a #if expression that has no business being there. Valid characters are the letters,
digits and those comprising the acceptable operators.
230

 9

uld be

g. The
illegal conversion (Parser)
This expression implies a conversion between incompatible types, e.g. a conversion of a structure type
into an integer.

illegal conversion between pointer types (Parser)
A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer of a
different type. This will usually mean you have used the wrong variable, but if this is genuinely what
you want to do, use a typecast to inform the compiler that you want the conversion and the warning will
be suppressed.

illegal conversion of integer to pointer (Parser)
An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform the
compiler that you want the conversion and the warning will be suppressed.

illegal conversion of pointer to integer (Parser)
A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you have
used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform the
compiler that you want the conversion and the warning will be suppressed.

illegal flag * (Linker)
This flag is unrecognized.

illegal function qualifier(s) (Parser)
A qualifier such as "const" or "volatile" has been applied to a function. These qualifiers only make sense
when used with an lvalue (i.e. an expression denoting memory storage). Perhaps you left out a star ("*")
indicating that the function should return a pointer to a qualified object.

illegal initialisation (Parser)
You can’t initialise a "typedef" declaration, because it does not reserve any storage that co
initialised.

illegal operation on a bit variable (Parser)
Not all operations on bit variables are supported. This operation is one of those.

illegal operator in #if (Preprocessor)
A #if expression has an illegal operator. Check for correct syntax.

illegal or too many -g flags (Linker)
There has been more than one -g option, or the -g option did not have any arguments followin
arguments specify how the segment addresses are calculated.
HI-TECH C Z80 compiler 231

Error Messages

 9

alue is

esult in
illegal or too many -o flags (Linker)
This -o flag is illegal, or another -o option has been encountered. A -o option to the linker must have a
filename. There should be no space between the filename and the -o, e.g. -ofile.obj

illegal or too many -p flags (Linker)
There have been too many -p options passed to the linker, or a -p option was not followed by any
arguments. The arguments of separate -p options may be combined and separated by commas.

illegal record type (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Try recreating the object file.

illegal relocation size: * (Linker)
There is an error in the object code format read by the linker. This either means you are using a linker
that is out of date, or that there is an internal error in the assembler or linker.

illegal relocation type: * (Linker)
An object file contained a relocation record with an illegal relocation type. This probably means the file
is corrupted or not an object file.

illegal switch * (Code Generator, Assembler, Optimiser)
This command line option was not understood.

illegal type for array dimension (Parser)
An array dimension must be either an integral type or an enumerated value.

illegal type for index expression (Parser)
An index expression must be either integral or an enumerated value.

illegal type for switch expression (Parser)
A "switch" operation must have an expression that is either an integral type or an enumerated value.

illegal use of void expression (Parser)
A void expression has no value and therefore you can’t use it anywhere an expression with a v
required, e.g. as an operand to an arithmetic operator.

image too big (Objtohex)
The program image being constructed by objtohex is too big for its virtual memory system.

implicit conversion of float to integer (Parser)
A floating point value has been assigned or otherwise converted to an integral type. This could r
truncation of the floating point value. A typecast will make this warning go away.
232

 9

ximum

of the

erator.
 same
k the
thing

not an
implicit return at end of non-void function (Parser)
A function which has been declared to return a value has an execution path that will allow it to reach the
end of the function body, thus returning without a value. Either insert a return statement with a value, or
if the function is not to return a value, declare it "void".

implict signed to unsigned conversion (Parser)
A signed number is being assigned or otherwise converted to a larger unsigned type. Under the ANSI
"value preserving" rules, this will result in the signed value being first sign-extended to a signed number
the size of the target type, then converted to unsigned (which involves no change in bit pattern). Thus
an unexpected sign extension can occur. To ensure this does not happen, first convert the signed value
to an unsigned equivalent, e.g. if you want to assign a signed char to an unsigned int, first typecast the
char value to "unsigned char".

inappropriate ’else’ (Parser)
An "else" keyword has been encountered that cannot be associated with an "if" statement. This may
mean there is a missing brace or other syntactic error.

inappropriate break/continue (Parser)
A "break" or "continue" statement has been found that is not enclosed in an appropriate control structure.
"continue" can only be used inside a "while", "for" or "do while" loop, while "break" can only be used
inside those loops or a "switch" statement.

include files nested too deep (Assembler)
Macro expansions and include file handling have filled up the assembler’s internal stack. The ma
number of open macros and include files is 30.

included file * was converted to lower case (Preprocessor)
The file specified to be included was not found, but a file with a lowercase version of the name
file specified was found and used instead.

incompatible intermediate code version; should be * (Code Generator)
The intermediate code file produced by P1 is not the correct version for use with this code gen
This is either that incompatible versions of one or more compilers have been installed in the
directory, or a temporary file error has occurred leading to corruption of a temporary file. Chec
setting of the TEMP environment variable. If it refers to a long path name, change it to some
shorter.

incomplete * record body: length = * (Linker)
An object file contained a record with an illegal size. This probably means the file is truncated or
object file.

incomplete ident record (Libr)
The IDENT record in the object file was incomplete.
HI-TECH C Z80 compiler 233

Error Messages

 9
incomplete record (Objtohex, Libr)
The object file passed to objtohex or the librarian is corrupted.

incomplete record: * (Linker)
An object code record is incomplete. This is probably due to a corrupted or invalid object module. Re-
compile the source file, watching for out of disk space errors etc.

incomplete record: type = * length = *
This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not a
valid HI-TECH object file, or that it has been truncated, possibly due to running out of disk or RAMdisk
space.

incomplete symbol record (Libr)
The SYM record in the object file was incomplete.

inconsistent lineno tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

inconsistent storage class (Parser)
A declaration has conflicting storage classes. Only one storage class should appear in a declaration.

inconsistent symbol tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

inconsistent type (Parser)
Only one basic type may appear in a declaration, thus combinations like "int float" are illegal.

index offset too large (Assembler)
An offset on a Z80 indexed addressing form must lie in the range -128 to 127.

initialisation syntax (Parser)
The initialisation of this object is syntactically incorrect. Check for the correct placement and number
of braces and commas.

initializer in ’extern’ declaration (Parser)
A declaration containing the keyword "extern" has an initialiser. This overrides the "extern" storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it.

insufficient memory for macro def’n (Assembler)
There is not sufficient memory to store a macro definition.

integer constant expected (Parser)
A colon appearing after a member name in a structure declaration indicates that the member is a bitfield.
An integral constant must appear after the colon to define the number of bits in the bitfield.
234

 9

formed

om the
integer expression required (Parser)
In an "enum" declaration, values may be assigned to the members, but the expression must evaluate to
a constant of type "int".

integral argument required (Parser)
An integral argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

integral type required (Parser)
This operator requires operands that are of integral type only.

interrupt_level should be 0 to 7 (Parser)
The pragma ’interrupt_level’ must have an argument from 0 to 7.

invalid disable: * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

invalid format specifier or type modifier (Parser)
The format specifier or modifier in the printf() style string is illegal for this particular format.

invalid hex file: *, line * (Cromwell)
The specified Hex file contains an invalid line.

invalid number syntax (Assembler, Optimiser)
The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other mal
numbers.

jump out of range (Assembler)
A short jump ("JR") instruction has been given an address that is more than 128 bytes away fr
present location. Use the "JP" opcode instead.

label identifier expected (Parser)
An identifier denoting a label must appear after "goto".

lexical error (Assembler, Optimiser)
An unrecognized character or token has been seen in the input.

library * is badly ordered (Linker)
This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

library file names should have .lib extension: * (Libr)
Use the .lib extension when specifying a library.
HI-TECH C Z80 compiler 235

Error Messages

 9

000

ach
line does not have a newline on the end (Parser)
The last line in the file is missing the newline (linefeed, hex 0A) from the end. Some editors will create
such files, which can cause problems for include files. The ANSI C standard requires all source files to
consist of complete lines only.

line too long (Optimiser)
This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over 1
characters long to do this, so it would normally only occur as a result of macro expansion.

local illegal outside macros (Assembler)
The "LOCAL" directive is only legal inside macros. It defines local labels that will be unique for e
invocation of the macro.

local psect ’*’ conflicts with global psect of same name (Linker)
A local psect may not have the same name as a global psect.

logical type required (Parser)
The expression used as an operand to "if", "while" statements or to boolean operators like ! and && must
be a scalar integral type.

long argument required (Parser)
A long argument is required for this format specifier. Check the number and order of format specifiers
and corresponding arguments.

macro * wasn’t defined (Preprocessor)
A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot be
undefined.

macro argument after * must be absolute (Assembler)
The argument after * in a macro call must be absolute, as it must be evaluated at macro call time.

macro argument may not appear after local (Assembler)
The list of labels after the directive "LOCAL" may not include any of the formal parameters to the
macro.

macro expansions nested too deep (Assembler)
Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files nested
at one time.

macro work area overflow (Preprocessor)
The total length of a macro expansion has exceeded the size of an internal table. This table is normally
8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K bytes.

member * redefined (Parser)
This name of this member of the struct or union has already been used in this struct or union.
236

 9
members cannot be functions (Parser)
A member of a structure or a union may not be a function. It may be a pointer to a function. The correct
syntax for a function pointer requires the use of parentheses to bind the star ("*") to the pointer name,
e.g. "int (*name)();".

metaregister * can’t be used directly (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

mismatched comparision (Code Generator)
A comparison is being made between a variable or expression and a constant value which is not in the
range of possible values for that expression, e.g. if you compare an unsigned character to the constant
value 300, the result will always be false (not equal) since an unsigned character can NEVER equal 300.
As an 8 bit value it can represent only 0-255.

misplaced ’?’ or ’:’, previous operator is * (Preprocessor)
A colon operator has been encountered in a #if expression that does not match up with a corresponding
? operator. Check parentheses etc.

misplaced constant in #if (Preprocessor)
A constant in a #if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator.

missing ’)’ (Parser)
A closing parenthesis was missing from this expression.

missing ’=’ in class spec (Linker)
A class spec needs an = sign, e.g. -Ctext=ROM

missing ’]’ (Parser)
A closing square bracket was missing from this expression.

missing arg to -a (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

missing arg to -e (Linker)
The error file name must be specified following the -e linker option.

missing arg to -i (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

missing arg to -j (Linker)
The maximum number of errors before aborting must be specified following the -j linker option.

missing arg to -q (Linker)
The -Q linker option requires the machine type for an argument.
HI-TECH C Z80 compiler 237

Error Messages

 9

existing
a psect

t illegal,

r.

r.

 has no

res a

line at
missing arg to -u (Linker)
The -U (undefine) option needs an argument, e.g. -U_symbol

missing arg to -w (Linker)
The -W option (listing width) needs a numeric argument.

missing argument to ’pragma psect’ (Parser)
The pragma ’psect’ requires an argument of the form oldname=newname where oldname is an
psect name known to the compiler, and newname is the desired new name. Example: #pragm
bss=battery

missing argument to ’pragma switch’ (Parser)
The pragma ’switch’ requires an argument of auto, direct or simple.

missing basic type: int assumed (Parser)
This declaration does not include a basic type, so int has been assumed. This declaration is no
but it is preferable to include a basic type to make it clear what is intended.

missing key in avmap file (Linker)
A file required for producing Avocet format symbol files is corrupted. Try re-installing the compile

missing memory key in avmap file (Linker)
A file required for producing Avocet format symbol files is corrupted. Try re-installing the compile

missing name after pragma ’inline’ (Parser)
The ’inline’ pragma has the syntax:

#pragma inline func_name

where func_name is the name of a function which is to be expanded to inline code. This pragma
effect except on functions specially recognized by the code generator.

missing name after pragma ’printf_check’ (Parser)
The pragma ’printf_check’, which enable printf style format string checking for a function, requi
function name, e.g.

#pragma printf_check sprintf

missing newline (Preprocessor)
A new line is missing at the end of the line. Each line, including the last line, must have a new
the end. This problem is normally introduced by editors.

missing number after % in -p option (Linker)
The % operator in a -p option (for rounding boundaries) must have a number after it.
238

 9

s. Use
es are

zero.

a binary
 would
r files.
missing number after pragma ’pack’ (Parser)
The pragma ’pack’ requires a decimal number as argument. For example

#pragma pack(1)

will prevent the compiler aligning structure members onto anything other than one byte boundarie
this with caution as some processors enforce alignment and will not operate correctly if word fetch
made on odd boundaries (e.g. 68000, 8096).

missing number after pragma interrupt_level (Parser)
Pragma ’interrupt_level’ requires an argument from 0 to 7.

missing processor name after -p (Cromwell)
The -p option to cromwell must specify a processor.

mod by zero in #if, zero result assumed (Preprocessor)
A modulus operation in a #if expression has a zero divisor. The result has been assumed to be

module * defines no symbols (Libr)
No symbols were found in the module’s object file.

module has code below file base of * (Linker)
This module has code below the address given, but the -C option has been used to specify that
output file is to be created that is mapped to this address. This would mean code from this module
have to be placed before the beginning of the file! Check for missing psect directives in assemble

multi-byte constant * isn’t portable (Preprocessor)
Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler.

multiple free: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

multiply defined symbol * (Assembler, Linker)
This symbol has been defined in more than one place in this module.

near function should be static (Code Generator)
A near function in the bank switched model should be static, as it cannot be called from another module.

nested #asm directive (Preprocessor)
It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive.

nested comments (Preprocessor)
This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed.
HI-TECH C Z80 compiler 239

Error Messages

 9
no #asm before #endasm (Preprocessor)
A #endasm operator has been encountered, but there was no previous matching #asm.

no arg to -o (Assembler)
The assembler requires that an output file name argument be supplied after the "-O" option. No space
should be left between the -O and the filename.

no case labels (Code Generator)
There are no case labels in this switch statement.

no end record (Linker)
This object file has no end record. This probably means it is not an object file.

no end record found (Linker)
An object file did not contain an end record. This probably means the file is corrupted or not an object
file.

no file arguments (Assembler)
The assembler has been invoked without any file arguments. It cannot assemble anything.

no identifier in declaration (Parser)
The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces.

no input files specified (Cromwell)
Cromwell must have an input file to convert.

no memory for string buffer (Parser)
P1 was unable to allocate memory for the longest string encountered, as it attempts to sort and merge
strings. Try reducing the number or length of strings in this module.

no output file format specified (Cromwell)
The output format must be specified to Cromwell.

no psect specified for function variable/argument allocation (Linker)
This is probably caused by omission of correct run-time startoff module. Check the linker arguments, or
"Object Files..." in HPD.

no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)
The code generator could not allocate any more memory. Try increasing the size of available memory.

no space for macro def’n (Assembler)
The assembler has run out of memory.
240

 9

f those

 return

ntheses

wn to
no start record: entry point defaults to zero (Linker)
None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in your
startup module by using the "END" directive.

no. of arguments redeclared (Parser)
The number of arguments in this function declaration does not agree with a previous declaration of the
same function.

nodecount = * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

non-constant case label (Code Generator)
A case label in this switch statement has a value which is not a constant.

non-prototyped function declaration: * (Parser)
A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions. If the function has no arguments, declare it as e.g. "int func(void)".

non-scalar types can’t be converted (Parser)
You can’t convert a structure, union or array to anything else. You can convert a pointer to one o
things, so perhaps you left out an ampersand ("&").

non-void function returns no value (Parser)
A function that is declared as returning a value has a "return" statement that does not specify a
value.

not a member of the struct/union * (Parser)
This identifier is not a member of the structure or union type with which it used here.

not a variable identifier: * (Parser)
This identifier is not a variable; it may be some other kind of object, e.g. a label.

not an argument: * (Parser)
This identifier that has appeared in a K&R stype argument declarator is not listed inside the pare
after the function name. Check spelling.

null format name (Cromwell)
The -I or -O option to Cromwell must specify a file format.

object code version is greater than * (Linker)
The object code version of an object module is higher than the highest version the linker is kno
work with. Check that you are using the correct linker.
HI-TECH C Z80 compiler 241

Error Messages

 9
object file is not absolute (Objtohex)
The object file passed to objtohex has relocation items in it. This may indicate it is the wrong object file,
or that the linker or objtohex have been given invalid options.

only functions may be qualified interrupt (Parser)
The qualifier "interrupt" may not be applied to anything except a function.

only functions may be void (Parser)
A variable may not be "void". Only a function can be "void".

only lvalues may be assigned to or modified (Parser)
Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned to
or otherwise modified. A typecast does not yield an lvalue. To store a value of different type into a
variable, take the address of the variable, convert it to a pointer to the desired type, then dereference that
pointer, e.g. "*(int *)&x = 1" is legal whereas "(int)x = 1" is not.

only modifier l valid with this format (Parser)
The only modifier that is legal with this format is l (for long).

only modifiers h and l valid with this format (Parser)
Only modifiers h (short) and l (long) are legal with this printf() format specifier.

only register storage class allowed (Parser)
The only storage class allowed for a function parameter is "register".

oops! -ve number of nops required! (Assembler)
An internal error has occurred. Contact HI-TECH.

operand error (Assembler, Optimiser)
The operand to this opcode is invalid. Check you assembler reference manual for the proper form of
operands for this instruction.

operands of * not same pointer type (Parser)
The operands of this operator are of different pointer types. This probably means you have used the
wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error message.

operands of * not same type (Parser)
The operands of this operator are of different pointer. This probably means you have used the wrong
variable, but if the code is actually what you intended, use a typecast to suppress the error message.

operator * in incorrect context (Preprocessor)
An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary operators
are not separated by a value.
242

 9

mory,

ou are
mpt.

e, or C

plitting

s long.

 done,

isting

bly due

nt pass.

nt pass.

ructure
out of far memory (Code Generator)
The compiler has run out of far memory. Try removing TSR’s etc. If your system supports EMS me
the compiler will be able to use up to 64K of this, so if it is not enable, try enabling EMS.

out of memory (Code Generator, Assembler, Optimiser)
The compiler has run out of memory. If you have unnecessary TSRs loaded, remove them. If y
running the compiler from inside another program, try running it directly from the command pro
Similarly, if you are using HPD, try using the command line compiler driver instead.

out of memory allocating * blocks of * (Linker)
Memory was required to extend an array but was unavailable.

out of memory for assembler lines (Optimiser)
The optimizer has run out of memory to store assembler lines, e.g. #asm lines from the C sourc
source comment lines. Reduce the size of the function.

out of near memory (Code Generator)
The compiler has run out of near memory. This is probably due to too many symbol names. Try s
the program up, or reducing the number of unused symbols in header files etc.

out of space in macro * arg expansion (Preprocessor)
A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 byte

output file cannot be also an input file (Linker)
The linker has detected an attempt to write its output file over one of its input files. This cannot be
because it needs to simultaneously read and write input and output files.

page width must be >= * (Assembler)
The listing page width must be at least * characters. Any less will not allow a properly formatted l
to be produced.

phase error (Assembler)
The assembler has calculated a different value for a symbol on two different passes. This is proba
to bizarre use of macros or conditional assembly.

phase error in macro args (Assembler)
The assembler has detected a difference in the definition of a symbol on the first and a subseque

phase error on temporary label (Assembler)
The assembler has detected a difference in the definition of a symbol on the first and a subseque

pointer required (Parser)
A pointer is required here. This often means you have used "->" with a structure rather than a st
pointer.
HI-TECH C Z80 compiler 243

Error Messages

 9
pointer to * argument required (Parser)
A pointer argument is required for this format specifier. Check the number and order of format specifiers
and corresponding arguments.

pointer to non-static object returned (Parser)
This function returns a pointer to a non-static (e.g. automatic) variable. This is likely to be an error, since
the storage associated with automatic variables becomes invalid when the function returns.

portion of expression has no effect (Code Generator)
Part of this expression has no side effects, and no effect on the value of the expression.

possible pointer truncation (Parser)
A pointer qualified "far" has been assigned to a default pointer or a pointer qualified "near", or a default
pointer has been assigned to a pointer qualified "near". This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

preprocessor assertion failure (Preprocessor)
The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer induced
error.

probable missing ’}’ in previous block (Parser)
The compiler has encountered what looks like a function or other declaration, but the preceding function
has not been ended with a closing brace. This probably means that a closing brace has been omitted from
somewhere in the previous function, although it may well not be the last one.

psect * cannot be in classes * (Linker)
A psect cannot be in more than one class. This is either due to assembler modules with conflicting class=
options, or use of the -C option to the linker.

psect * memory delta redefined: */* (Linker)
A global psect has been defined with two different deltas.

psect * memory space redefined: */* (Linker)
A global psect has been defined in two different memory spaces. Either rename one of the psects or, if
they are the same psect, place them in the same memory space using the SPACE psect flag.

psect * not loaded on * boundary (Linker)
This psect has a relocatability requirement that is not met by the load address given in a -P option. For
example if a psect must be on a 4K byte boundary, you could not start it at 100H.

psect * not relocated on * boundary (Linker)
This psect is not relocated on the required boundary. Check the relocatability of the psect and correct the
-p option. if necessary.
244

 9
psect * not specified in -p option (Linker)
This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the program,
which is probably not where you wanted it.

psect * re-orged (Linker)
This psect has had its start address specified more than once.

psect * selector value redefined (Linker)
The selector value for this psect has been defined more than once.

psect * type redefined: * (Linker)
This psect has had its type defined differently by different modules. This probably means you are trying
to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode code.

psect exceeds address limit: * (Linker)
The maximum address of the psect exceeds the limit placed on it using the LIMIT psect flag.

psect exceeds max size: * (Linker)
The psect has more bytes in it than the maximum allowed as specified using the SIZE psect flag.

psect is absolute: * (Linker)
This psect is absolute and should not have an address specified in a -P option.

psect may not be local and global (Assembler)
A psect may not be declared to be local if it has already been declared to be (default) global.

psect origin multiply defined: * (Linker)
The origin of this psect is defined more than once.

psect property redefined (Assembler)
A property of a psect has been defined in more than place to be different.

psect reloc redefined (Assembler)
The relocatability of this psect has been defined differently in two or more places.

psect selector redefined (Linker)
The selector associated with this psect has been defined differently in two or more places.

psect size redefined (Assembler)
The maximum size of this psect has been defined differently in two or more places.

qualifiers redeclared (Parser)
This function has different qualifiers in different declarations.

read error on * (Linker)
The linker encountered an error trying to read this file.
HI-TECH C Z80 compiler 245

Error Messages

 9
record too long (Objtohex)
This indicates that the object file is not a valid HI-TECH object file.

record too long: * (Linker)
An object file contained a record with an illegal size. This probably means the file is corrupted or not an
object file.

recursive function calls: (Linker)
These functions (or function) call each other recursively. One or more of these functions has statically
allocated local variables (compiled stack). Either use the reentrant keyword (if supported with this
compiler) or recode to avoid recursion.

recursive macro definition of * (Preprocessor)
The named macro has been defined in such a manner that expanding it causes a recursive expansion of
itself!

redefining macro * (Preprocessor)
The macro specified is being redefined, to something different to the original definition. If you want to
deliberately redefine a macro, use #undef first to remove the original definition.

redundant & applied to array (Parser)
The address operator "&" has been applied to an array. Since using the name of an array gives its address
anyway, this is unnecessary and has been ignored.

refc == 0 (Assembler, Optimiser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

regused - bad arg to g (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

relocation error (Assembler, Optimiser)
It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must be
used in various places where the assembler must know a value at assembly time.

relocation offset * out of range * (Linker)
An object file contained a relocation record with a relocation offset outside the range of the preceding
text record. This means the object file is probably corrupted.

relocation too complex (Assembler)
The complex relocation in this expression is too big to be inserted into the object file.

remsym error (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
246

 9

 the "-P"

eclared
rations

ats it

address

explicit

dicates
rray. In
nown

 by the
replace what ? (Libr)
The librarian requires one or more modules to be listed for replacement when using the ’r’ key.

rept argument must be >= 0 (Assembler)
The argument to a "REPT" directive must be greater than zero.

seek error: * (Linker)
The linker could not seek when writing an output file.

segment * overlaps segment * (Linker)
The named segments have overlapping code or data. Check the addresses being assigned by
option.

signatures do not match: * (Linker)
The specified function has different signatures in different modules. This means it has been d
differently, e.g. it may have been prototyped in one module and not another. Check what decla
for the function are visible in the two modules specified and make sure they are compatible.

signed bitfields not supported (Parser)
Only unsigned bitfields are supported. If a bitfield is declared to be type "int", the compiler still tre
as unsigned.

simple integer expression required (Parser)
A simple integral expression is required after the operator "@", used to associate an absolute
with a variable.

simple type required for * (Parser)
A simple type (i.e. not an array or structure)is required as an operand to this operator.

sizeof external array * is zero (Parser)
The sizeof an external array evaluates to zero. This is probably due to the array not having an
dimension in the extern declaration.

sizeof yields 0 (Code Generator)
The code generator has taken the size of an object and found it to be zero. This almost certainly in
an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero length a
general, pointers to arrays are of little use. If you require a pointer to an array of objects of unk
length, you only need a pointer to a single object that can then be indexed or incremented.

static object has zero size: * (Code Generator)
A static object has been declared, but has a size of zero.

storage class illegal (Parser)
A structure or union member may not be given a storage class. Its storage class is determined
storage class of the structure.
HI-TECH C Z80 compiler 247

Error Messages

 9
storage class redeclared (Parser)
A variable or function has been re-declared with a different storage class. This can occur where there are
two conflicting declarations, or where an implicit declaration is followed by an actual declaration.

strange character * after ## (Preprocessor)
A character has been seen after the token catenation operator ## that is neither a letter nor a digit. Since
the result of this operator must be a legal token, the operands must be tokens containing only letters and
digits.

strange character after # * (Preprocessor)
There is an unexpected character after #.

string concatenation across lines (Parser)
Strings on two lines will be concatenated. Check that this is the desired result.

string expected (Parser)
The operand to an "asm" statement must be a string enclosed in parentheses.

string lookup failed in coff:get_string() (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

string too long (Assembler)
This string is too long. Shorten it.

struct/union member expected (Parser)
A structure or union member name must follow a dot (".") or arrow ("->").

struct/union redefined: * (Parser)
A structure or union has been defined more than once.

struct/union required (Parser)
A structure or union identifier is required before a dot (".").

struct/union tag or ’{’ expected (Parser)
An identifier denoting a structure or union or an opening brace must follow a "struct" or "union"
keyword.

symbol * cannot be global (Linker)
There is an error in an object file, where a local symbol has been declared global. This is either an invalid
object file, or an internal error in the linker. Try recreating the object file.

symbol * has erroneous psect: * (Linker)
There is an error in an object file, where a symbol has an invalid psect. This is either an invalid object
file, or an internal error in the linker. Try recreating the object file.
248

 9

nker.

piling

ould

ould
symbol * not defined in #undef (Preprocessor)
The symbol supplied as argument to #undef was not already defined. This is a warning only, but could
be avoided by including the #undef in a #ifdef ... #endif block.

syntax error (Assembler, Optimiser)
A syntax error has been detected. This could be caused a number of things.

syntax error in -a spec (Linker)
The -A spec is invalid. A valid -A spec should be something like:

-AROM=1000h-1FFFh

syntax error in checksum list (Linker)
There is a syntax error in a checksum list read by the linker. The checksum list is read from standard
input by the linker, in response to an option. Re-read the manual on checksum list.

syntax error in local argument (Assembler)
There is a syntax error in a local argument.

text does not start at 0 (Linker)
Code in some things must start at zero. Here it doesn’t.

text offset too low (Linker)
You aren’t likely to see this error. Rhubarb!

text record has bad length: * (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the li
Try recreating the object file.

text record has length too small: * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

this function too large - try reducing level of optimization (Code Generator)
A large function has been encountered when using a -Og (global optimization) switch. Try re-com
without the global optimization, or reduce the size of the function.

this is a struct (Parser)
This identifier following a "union" or "enum" keyword is already the tag for a structure, and thus sh
only follow the keyword "struct".

this is a union (Parser)
This identifier following a "struct" or "enum" keyword is already the tag for a union, and thus sh
only follow the keyword "union".
HI-TECH C Z80 compiler 249

Error Messages

 9
this is an enum (Parser)
This identifier following a "struct" or "union" keyword is already the tag for an enumerated type, and
thus should only follow the keyword "enum".

too few arguments (Parser)
This function requires more arguments than are provided in this call.

too few arguments for format string (Parser)
There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time.

too many (*) enumeration constants (Parser)
There are too many enumeration constants in an enumerated type. The maximum number of enumerated
constants allowed in an enumerated type is 512.

too many (*) structure members (Parser)
There are too many members in a structure or union. The maximum number of members allowed in one
structure or union is 512.

too many address spaces - space * ignored (Linker)
The limit to the number of address spaces is currently 16.

too many arguments (Parser)
This function does not accept as many arguments as there are here.

too many arguments for format string (Parser)
There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string.

too many arguments for macro (Preprocessor)
A macro may only have up to 31 parameters, as per the C Standard.

too many arguments in macro expansion (Preprocessor)
There were too many arguments supplied in a macro invocation. The maximum number allowed is 31.

too many cases in switch (Code Generator)
There are too many case labels in this switch statement. The maximum allowable number of case labels
in any one switch statement is 511.

too many comment lines - discarding (Assembler)
The compiler is generating assembler code with embedded comments, but this function is so large that
an excessive number of source line comments are being generated. This has been suppressed so that the
optimizer will not run out of memory loading comment lines.
250

 9
too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)
There were so many errors that the compiler has given up. Correct the first few errors and many of the
later ones will probably go away.

too many file arguments. usage: cpp [input [output]] (Preprocessor)
CPP should be invoked with at most two file arguments.

too many files in coff file (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

too many include directories (Preprocessor)
A maximum of 7 directories may be specified for the preprocessor to search for include files.

too many initializers (Parser)
There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure).

too many input files (Cromwell)
To many input files have been specified to be converted by Cromwell.

too many macro parameters (Assembler)
There are too many macro parameters on this macro definition.

too many nested #* statements (Preprocessor)
#if, #ifdef etc. blocks may only be nested to a maximum of 32.

too many nested #if statements (Preprocessor)
#if, #ifdef etc. blocks may only be nested to a maximum of 32.

too many output files (Cromwell)
To many output file formats have been specified to Cromwell.

too many psect class specifications (Linker)
There are too many psect class specifications (-C options)

too many psect pragmas (Code Generator)
Too many "pragma psect" directives have been used.

too many psects (Assembler)
There are too many psects! Boy, what a program!

too many qualifier names (Parser)
There are too many qualifier names specified.

too many relocation items (Objtohex)
Objtohex filled up a table. This program is just way too complex!
HI-TECH C Z80 compiler 251

Error Messages

 9
too many segment fixups (Objtohex)
There are too many segment fixups in the object file given to objtohex.

too many segments (Objtohex)
There are too many segments in the object file given to objtohex.

too many symbols (Assembler)
There are too many symbols for the assemblers symbol table. Reduce the number of symbols in your
program. If it is the linker producing this error, suggest changing some global to local symbols.

too many symbols (*) (Linker)
There are too many symbols in the symbol table, which has a limit of * symbols. Change some global
symbols to local symbols to reduce the number of symbols.

too many symbols in * (Optimiser)
There are too many symbols in the specified function. Reduce the size of the function.

too many temporary labels (Assembler)
There are too many temporary labels in this assembler file. The assembler allows a maximum of 2000
temporary labels.

too much indirection (Parser)
A pointer declaration may only have 16 levels of indirection.

too much pushback (Preprocessor)
This error should not occur, and represents an internal error in the preprocessor.

type conflict (Parser)
The operands of this operator are of incompatible types.

type modifier already specified (Parser)
This type modifier has already be specified in this type.

type modifiers not valid with this format (Parser)
Type modifiers may not be used with this format.

type redeclared (Parser)
The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration.

type specifier reqd. for proto arg (Parser)
A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

unable to open list file * (Linker)
The named list file could not be opened.
252

 9
unbalanced paren’s, op is * (Preprocessor)
The evaluation of a #if expression found mismatched parentheses. Check the expression for correct
parenthesisation.

undefined *: * (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

undefined enum tag: * (Parser)
This enum tag has not been defined.

undefined identifier: * (Parser)
This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors.

undefined shift (* bits) (Code Generator)
An attempt has been made to shift a value by a number of bits equal to or greater than the number of bits
in the data type, e.g. shifting a long by 32 bits. This will produce an undefined result on many processors.
This is non-portable code and is flagged as having undefined results by the C Standard.

undefined struct/union (Parser)
This structure or union tag is undefined. Check spelling etc.

undefined struct/union: * (Parser)
The specified structure or union tag is undefined. Check spelling etc.

undefined symbol * (Assembler)
The named symbol is not defined, and has not been specified "GLOBAL".

undefined symbol * in #if, 0 used (Preprocessor)
A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this expression,
its value has been taken as zero.

undefined symbol in fnaddr record: * (Linker)
The linker has found an undefined symbol in the fnaddr record for a non-reentrant function.

undefined symbol in fnbreak record: * (Linker)
The linker has found an undefined symbol in the fnbreak record for a non-reentrant function.

undefined symbol in fncall record: * (Linker)
The linker has found an undefined symbol in the fncall record for a non-reentrant function.

undefined symbol in fnindir record: * (Linker)
The linker has found an undefined symbol in the fnindir record for a non-reentrant function.
HI-TECH C Z80 compiler 253

Error Messages

 9 n placed

nker.
undefined symbol in fnroot record: * (Linker)
The linker has found an undefined symbol in the fnroot record for a non-reentrant function.

undefined symbol in fnsize record: * (Linker)
The linker has found an undefined symbol in the fnsize record for a non-reentrant function.

undefined symbol: (Assembler, Linker)
The symbol following is undefined at link time. This could be due to spelling error, or failure to link an
appropriate module.

undefined symbols: (Linker)
A list of symbols follows that were undefined at link time.

undefined temporary label (Assembler)
A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

undefined variable: * (Parser)
This variable has been used but not defined at this point.

unexpected end of file (Linker)
This probably means an object file has been truncated because of a lack of disk space.

unexpected eof (Parser)
An end-of-file was encountered unexpectedly. Check syntax.

unexpected text in #control line ignored (Preprocessor)
This warning occurs when extra characters appear on the end of a control line, e.g.

#endif something

The "something" will be ignored, but a warning is issued. It is preferable (and in accordance with
Standard C) to enclose the "something" as a comment, e.g.

#endif /* something */

unexpected \ in #if (Preprocessor)
The backslash is incorrect in the #if statement.

unknown ’with’ psect referenced by psect * (Linker)
The specified psect has been placed with a psect using the psect ’with’ flag. The psect it has bee
with does not exist.

unknown complex operator * (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the li
Try recreating the object file.
254

 9
unknown fnrec type * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

unknown format name ’*’ (Cromwell)
The output format specified to Cromwell is unknown.

unknown option * (Preprocessor)
This option to the preprocessor is not recognized.

unknown pragma * (Parser)
An unknown pragma directive was encountered.

unknown predicate * (Code Generator)
Internal error - Contact HI-TECH.

unknown psect (Optimiser)
The assembler file read by the optimizer has an unknown psect.

unknown psect: * (Linker, Optimiser)
This psect has been listed in a -P option, but is not defined in any module within the program.

unknown qualifier ’*’ given to -a (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown qualifier ’*’ given to -i (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown record type: * (Linker)
An invalid object module has been read by the linker. It is either corrupted or not an object file.

unknown register name * (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown symbol type * (Linker)
The symbol type encountered is unknown to this linker. Check that the correct linker is being used.

unreachable code (Parser)
This section of code will never be executed, because there is no execution path by which it could be
reached. Look for missing "break" statements inside a control structure like "while" or "for".

unreasonable matching depth (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unrecognized option to -z: * (Code Generator)
The code generator has been passed a -Z option it does not understand. This should not happen if it is
invoked with the standard driver.
HI-TECH C Z80 compiler 255

Error Messages

 9

ation
ler.

hich

 macro
unrecognized qualifer name after ’strings’ (Parser)
The pragma ’strings’ requires a list of valid qualifier names. For example

#pragma strings const code

would add const and code to the current string qualifiers. If no qualifiers are specified, all qualific
will be removed from subsequent strings. The qualifier names must be recognized by the compi

unterminated #if[n][def] block from line * (Preprocessor)
A #if or similar block was not terminated with a matching #endif. The line number is the line on w
the #if block began.

unterminated comment in included file (Preprocessor)
Comments begun inside an included file must end inside the included file.

unterminated macro arg (Assembler)
An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote
arguments.

unterminated string (Assembler, Optimiser)
A string constant appears not to have a closing quote missing.

unterminated string in macro body (Preprocessor, Assembler)
A macro definition contains a string that lacks a closing quote.

unused constant: * (Parser)
This enumerated constant is never used. Maybe it isn’t needed at all.

unused enum: * (Parser)
This enumerated type is never used. Maybe it isn’t needed at all.

unused label: * (Parser)
This label is never used. Maybe it isn’t needed at all.

unused member: * (Parser)
This structure member is never used. Maybe it isn’t needed at all.

unused structure: * (Parser)
This structure tag is never used. Maybe it isn’t needed at all.

unused typedef: * (Parser)
This typedef is never used. Maybe it isn’t needed at all.

unused union: * (Parser)
This union type is never used. Maybe it isn’t needed at all.
256

 9

 case is

ill result

sion.

means
unused variable declaration: * (Parser)
This variable is never used. Maybe it isn’t needed at all.

unused variable definition: * (Parser)
This variable is never used. Maybe it isn’t needed at all.

upper case #include files are non-portable (Preprocessor)
When using DOS, the case of an #include file does not matter. In other operating systems the
significant.

variable may be used before set: * (Code Generator)
This variable may be used before it has been assigned a value. Since it is an auto variable, this w
in it having a random value.

void function cannot return value (Parser)
A void function cannot return a value. Any "return" statement should not be followed by an expres

while expected (Parser)
The keyword "while" is expected at the end of a "do" statement.

work buffer overflow doing * ## (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

work buffer overflow: * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

write error (out of disk space?) * (Linker)
Probably means that the hard disk is full.

write error on * (Assembler, Linker, Cromwell)
A write error occurred on the named file. This probably means you have run out of disk space.

write error on object file (Assembler)
An error was reported when the assembler was attempting to write an object file. This probably
there is not enough disk space.

wrong number of macro arguments for * - * instead of * (Preprocessor)
A macro has been invoked with the wrong number of arguments.

HI-TECH C Z80 compiler 257

Error Messages

 9
258

 10
Library Functions

The functions within the HI-TECH C Z80/Z180 compiler library are listed in this chapter. Each entry
begins with the name of the function. This is followed by information analysed into the following
headings.

Synopsis
This is the C definition of the function, and the header file in which it is declared.

Description
This is a narrative description of the function and its purpose.

Example
This is an example of the use of the function. It is usually a complete small program that illustrates the
function.

Data types
If any special data types (structures etc.) are defined for use with the function, they are listed here with
their C definition. These data types will be defined in the header file given under heading - Synopsis.

See also
This refers you to any allied functions.

Return value
The type and nature of the return value of the function, if any, is given. Information on error returns is
also included

Only those headings which are relevant to each function are used.
HI-TECH C Z80 compiler 259

Library Functions

 10
ABORT
Synopsis

#include <stdlib.h>

void abort (void)

Description
The function abort() is called to terminate the program abnormally. It will print an appropriate
message and exit with a status of negative one (-1), CPM only. Under DOS, the user will need to provide
a printf statement prior to calling abort. This function is not available for an embedded program.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

char * ptr, c;

ptr = &c;
if(ptr == NULL)

abort();
}

Return Value
Never returns.

Note
This routine is not usable in a ROM based system.
260

 10
ABS
Synopsis

#include <stdlib.h>

int abs (int j)

Description
The abs() function returns the absolute value of j.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

Return Value
The absolute value of j.
HI-TECH C Z80 compiler 261

Library Functions

 10
ACOS
Synopsis

#include <math.h>

double acos (double f)

Description
The acos() function implements the converse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example
#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also
sin(), cos(), tan(), asin(), atan(), atan2()

Return Value
An angle in radians, in the range 0 to π. Where the argument value is outside the domain -1 to 1, the
return value will be zero.
262

 10
ASCTIME
Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description
The asctime() function takes the time broken down into the struct tm structure, pointed to by
its argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed. The example gets
the current time, converts it to a struct tm pointer with localtime(), it then converts this to
ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also
ctime(), gmtime(), localtime(), time()

Return Value
A pointer to the string.

Note
The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.
HI-TECH C Z80 compiler 263

Library Functions

 10
Data Types
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
264

 10
ASIN
Synopsis

#include <math.h>

double asin (double f)

Description
The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also
sin(), cos(), tan(), acos(), atan(), atan2()

Return Value
An angle in radians, in the range -π/2 to +π/2. Where the argument value is outside the domain -1 to 1,
the return value will be zero.
HI-TECH C Z80 compiler 265

Library Functions

 10
ASSERT
Synopsis

#include <assert.h>

void assert (int e)

Description
This macro is used for debugging purposes; the basic method of usage is to place assertions liberally
throughout your code at points where correct operation of the code depends upon certain conditions
being true initially. An assert() routine may be used to ensure at run time that an assumption holds
true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying the
source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example
void
ptrfunc (struct xyz * tp)
{

assert(tp != 0);
}

Note
When required for ROM based systems, the underlying routine _fassert(...) will need to be
implemented by the user.
266

 10
ATAN
Synopsis

#include <math.h>

double atan (double x)

Description
This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -π/2 to π/2
such that tan(e) == x.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also
sin(), cos(), tan(), asin(), acos(), atan2()

Return Value
The arc tangent of its argument.
HI-TECH C Z80 compiler 267

Library Functions

 10
ATAN2
Synopsis

#include <math.h>

double atan2 (double y, double x)

Description
This function returns the arc tangent of y/x, using the sign of both arguments to determine the quadrant
of the return value.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan2(1.5, 1));
}

See Also
sin(), cos(), tan(), asin(), acos(), atan()

Return Value
The arc tangent of y/x in the range -π to +π radians. If both y and x are zero, a domain error occurs and
zero is returned.
268

 10
ATEXIT
Synopsis

#include <stdlib.h>

int atexit (void (*func)(void))

Description
The atexit() function, registers the function pointed to by func, to be called without arguments at
normal program termination. On program termination, all functions registered by atexit() are
called, in the reverse order of their registration.

Example
#include <stdio.h>
#include <stdlib.h>

char * fname;
FILE * fp;

void
rmfile (void)
{

if(fp)
close(fp);

if(fname)
remove(fname);

}
/* create a file; on exit, close and remove it */

void
main (void)
{

if(!(fp = fopen((fname = "test.fil"), "w")))
exit(1);

atexit(rmfile);
}

See Also
exit()

Return Value
The atexit() function returns zero if the registration succeeds, nonzero if it fails.
HI-TECH C Z80 compiler 269

Library Functions

 10
Note
This routine is not usable in a ROM based system.
270

 10
ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description
The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating point
or scientific notation.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also
atoi(), atol()

Return Value
A double precision floating point number. If no number is found in the string, 0.0 will be returned.
HI-TECH C Z80 compiler 271

Library Functions

 10
ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description
The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also
xtoi(), atof(), atol()

Return Value
A signed integer. If no number is found in the string, 0 will be returned.
272

 10
ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description
The atol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also
atoi(), atof()

Return Value
A long integer. If no number is found in the string, 0 will be returned.
HI-TECH C Z80 compiler 273

Library Functions

 10
BDOS
Synopsis

#include <cpm.h>

char bdos (int func, int arg)

Description
The bdos() function calls the CP/M BDOS with func in register C (CL for CP/M-86) and arg in
register DE (DX), if required. The return value is the byte returned by the BDOS in register A (AX).
Constant values for the various BDOS function values are defined in cpm.h.

Example
#include <cpm.h>

/* test to see if a key has been pressed */

char
kbhit (void)
{

return(bdos(0x0B) & 0xFF) != 0;
}

See Also
bdoshl(), bios(), msdos()

Note
This routine is not usable in a ROM based system.
274

 10
BDOSHL
Synopsis

#include <cpm.h>

short bdoshl (int, ...)

Description
This function will make a CP/M BDOS call, returning the value contained in HL after the call. It is used
for some BDOS calls where the return value is in HL. The example shows the use of bdoshl() to
determine the CP/M version number.

Example
#include <cpm.h>
#include <stdio.h>

void
main (void)
{

short verno;

verno = bdoshl(12);
printf("CP/M version number %d.%d\n", (verno >> 4) & 0xF, verno & 0xF);

}

See Also
bdos(), bios(), msdos()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 275

Library Functions

 10

C
f

. This
en no
BIOS
Synopsis

#include <cpm.h>

char bios (int n, int a1, int a2)

Description
This function will call the n’th bios entry point (cold boot = 0, warm boot = 1, etc.) with register B
(CX) set to the argument a1 and DE (DX) set to the argument a2. The return value is the contents o
register A (AX) after the bios call. On CP/M-86, BDOS function 50 is used to perform the bios call
function should not be used unless unavoidable, since it is highly non-portable. There is ev
guarantee of portability of bios calls between differing CP/M systems.

See Also
bdos()

Note
This routine is not usable in a ROM based system.
276

 10
BSEARCH
Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,

size_t size, int (*compar)(const void *, const void *))

Description
The bsearch() function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * p1, const void * p2)
{

return strcmp(((const struct value *)p1)->name,
((const struct value *)p2)->name);

}

void
main (void)
{

char inbuf[80];
int i;
struct value * vp;

i = 0;
while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);
i++;

}
qsort(values, i, sizeof values[0], val_cmp);
HI-TECH C Z80 compiler 277

Library Functions

 10
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if(!vp)

printf("Item ’fred’ was not found\n");
else

printf("Item ’fred’ has value %d\n", vp->value);
}

See Also
qsort()

Return Value
A pointer to the matched array element (if there is more than one matching element, any of these may
be returned). If no match is found, a null pointer is returned.

Note
The comparison function must have the correct prototype.
278

 10
CALLOC
Synopsis

#include <stdlib.h>

void * calloc (size_t cnt, size_t size)

Description
The calloc() function attempts to obtain a contiguous block of dynamic memory which will hold
cnt objects, each of length size. The block is filled with zeros.

Example
#include <stdlib.h>
#include <stdio.h>

struct test {
int a[20];

} * ptr;

/* Allocate space for 20 structures. */

void
main (void)
{

ptr = calloc(20, sizeof(struct test));
if(!ptr)

printf("Failed\n");
else

free(ptr);
}

See Also
brk(), sbrk(), malloc(), free()

Return Value
A pointer to the block is returned, or zero if the memory could not be allocated.
HI-TECH C Z80 compiler 279

Library Functions

 10
CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description
This routine returns the smallest whole number not less than f.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}
280

 10
CGETS
Synopsis

#include <conio.h>

char * cgets (char * s)

Description
The cgets() function will read one line of input from the console into the buffer passed as an
argument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far. Other
characters are placed in the buffer, with a carriage return or line feed (newline) terminating the function.
The collected string is null terminated.

Example
#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also
getch(), getche(), putch(), cputs()

Return Value
The return value is the character pointer passed as the sole argument.
HI-TECH C Z80 compiler 281

Library Functions

 10
CHMOD
Synopsis

#include <stat.h>
#include <unixio.h>

int chmod (const char * name, unsigned mode)

Description
This function changes the file attributes (or modes) of the named file. The argument name may be any
valid file name. The mode argument may include all bits defined in stat.h except those relating to
the type of the file, e.g. S_IFDIR.

Example
#include <stat.h>
#include <stdio.h>
#include <unixio.h>

/* make a file read-only */

void
main (int argc, char ** argv)
{

if(argc > 1)
if(chmod(argv[1], S_IREAD) < 0)

perror(argv[1]);
}

See Also
stat(), creat()

Return Value
Zero is returned on success, negative one (-1) on failure.

Note
Not all bits may be changed under all operating systems, e.g. neither DOS nor CP/M permit a file to be
made unreadable, thus even if mode does not include S_IREAD the file will still be readable (and
stat() will still return S_IREAD in flags).
This routine is not usable in a ROM based system.
282

 10
CLOSE
Synopsis

#include <unixio.h>

int close (int fd)

Description
This routine closes the file associated with the file descriptor fd, which will have been previously
obtained from a call to either functions, open() or creat().

Example
#include <unixio.h>
#include <stdio.h>

/* create an empty file */

void
main (int argc, char ** argv)
{

int fd;

if(argc > 1) {
if((fd = creat(argv[1], 0600)) < 0)

perror(argv[1]);
else

close(fd);
}

}

See Also
open(), read(), write(), seek()

Return Value
Returns zero for a successful close, or negative one (-1) otherwise.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 283

Library Functions

 10
CLRERR, CLREOF
Synopsis

#include <stdio.h>

void clrerr (FILE * stream)
void clreof (FILE * stream)

Description
These are macros, defined in stdio.h, which reset the error and end of file flags respectively for the
specified stream. They should be used with care; the major valid use is for clearing an end-of-file status
on input from a terminal like device, where it may be valid to continue to read after having seen an end-
of-file indication. If a clreof() is not done, then repeated reads will continue to return EOF.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char buf[80];

for(;;) {
if(!gets(buf)) {

printf("EOF seen\n");
clreof(stdin);

} else if(strcmp(buf, "quit") == 0)
break;

}
}

See Also
fopen(), fclose()

Note
This routine is not usable in a ROM based system.
284

 10
COS
Synopsis

#include <math.h>

double cos (double f)

Description
This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated by
expansion of a polynomial series approximation.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also
sin(), tan(), asin(), acos(), atan(), atan2()

Return Value
A double in the range -1 to +1.
HI-TECH C Z80 compiler 285

Library Functions

 10
COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description
These functions are the hyperbolic implementations of the trigonometric functions; cos(), sin() and
tan().

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value
The function cosh() returns the hyperbolic cosine value.
The function sinh() returns the hyperbolic sine value.
The function tanh() returns the hyperbolic tangent value.
286

 10
CPUTS
Synopsis

#include <conio.h>

void cputs (const char * s)

Description
The cputs() function writes its argument string to the console, outputting carriage returns before
each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from
puts() in that it reads the console directly, rather than using file I/O. In an embedded system
cputs() and puts() are equivalent.

Example
#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also
cputs(), puts(), putch()
HI-TECH C Z80 compiler 287

Library Functions

 10

ia the
CREAT
Synopsis

#include <stat.h>
#include <unixio.h>

int creat (const char * name, int mode)

Description
This routine attempts to create the file named by name. If the file exists and is writeable, it will be
removed and re-created. The return value is negative one (-1) if the create failed, or a small non-negative
number if it succeeded. This number is a valuable token which must be used to write to or close the file
subsequently. The argument mode is used to initialize the attributes of the created file. The allowable
bits are the same as for chmod(), but for Unix compatibility it is recommended that a mode of 0666
or 0600 be used. Under CP/M the mode is ignored - the only way to set a file’s attributes is v
chmod() function.

Example
#include <unixio.h>
#include <stat.h>
#include <stdio.h>

void
main (int argc, char ** argv)
{

int fd;

if(argc > 1) {
if((fd = creat(argv[1], 0600)) < 0)

perror(argv[1]);
else

close(fd);
}

}

See Also
open(), close(), read(), write(), seek(), stat(), chmod()

Return Value
If successful it will return a small non negative number. If failed will return negative one (-1).
288

 10
Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 289

Library Functions

 10
CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description
The ctime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also
gmtime(), localtime(), asctime(), time()

Return Value
A pointer to the string.

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

Data Types
typedef long time_t;
290

 10
DI, EI
Synopsis

#include <intrpt.h>

void ei (void)
void di (void)

Description
The ei() and di() routines enable and disable interrupts respectively. These are implemented as
macros defined in intrpt.h. On most processors they will expand to an in-line assembler instruction
that sets or clears the interrupt enable or mask bit.

The example shows the use of ei() and di() around access to a long variable that is modified during
an interrupt. If this was not done, it would be possible to return an incorrect value, if the interrupt
occurred between accesses to successive words of the count value.

Example
#include <intrpt.h>

long count;

void
interrupt tick (void)
{

count++;
}

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

di();
val = count;
ei();
return val;

}
HI-TECH C Z80 compiler 291

Library Functions

 10
DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description
The div() function computes the quotient and remainder of the numerator divided by the denominator.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value
Returns the quotient and remainder into the div_t structure.

Data Types
typedef struct
{

int quot;
int rem;

} div_t;
292

 10
DUP
Synopsis

#include <unixio.h>

int dup (int fd)

Description
Given a file descriptor, such as returned by open(), this routine will return another file descriptor
which will refer to the same open file.

Example
#include <stdio.h>
#include <unixio.h>
#include <stdlib.h>
#include <sys.h>

void
main (int argc, char ** argv)
{

FILE * fp;

if(argc < 3) {
fprintf(stderr, "Usage: fd2 stderr_file command ...\n");
exit(1);

}
if(!(fp = fopen(argv[1], "w"))) {

perror(argv[1]);
exit(1);

}
close(2);
dup(fileno(fp)); /* make stderr reference file */
fclose(fp);
spawnvp(argv[2], argv+2);
close(2);

}

See Also
open(), close(), creat(), read(), write()

Return Value
Negative one (-1) is returned if the fd argument is a bad descriptor or does not refer to an open file.
HI-TECH C Z80 compiler 293

Library Functions

 10
Note
This routine is not usable in a ROM based system.
294

 10
EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description
The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d,
at x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value
A double value, being the polynomial evaluated at x.
HI-TECH C Z80 compiler 295

Library Functions

 10
EXECL, EXECV
Synopsis

#include <sys.h>

int execl (char * name, pname, ...)
int execv (char * name, ppname)

Description
The functions load and execute the program specified by the string name. The execl() routine takes
the arguments for the program from the zero-terminated list of string arguments. The execv() function
is passed a pointer to an array of strings. The array must be zero-terminated. If the named program is
found and can be read, the call does not return. Thus any return from these routines may be treated as an
error.

Example
#include <cpm.h>
#include <stdio.h>
#include <sys.h>

void
main (void)
{

execl("tst.com", "tst", "argument 1", 0);
perror("tst.com");

}

See Also
spawnl(), spawnv(), system()

Note
The second argument to execl() or the first string in the array of strings passed to execv() is
nominally argv[0] in the executed program. However, since CP/M has no way of passing the program
name, this string will be unused. It must however be present as a placeholder.
This routine is not usable in a ROM based system.
296

 10
EXIT
Synopsis

#include <stdlib.h>

void exit (int status)

Description
This call will close all open files and exit from the program. On CP/M, this means a return to CCP level,
under MS-DOS a return to the DOS prompt or the program which spawned the current program. The
value status is used as the exit value of the program. This is recovered under DOS with the wait for
status DOS call. The status value will be stored on CP/M at 80H. In an embedded system exit()
normally restarts the program as though a hardware reset had occurred. This call will never return.

Example
#include <stdlib.h>

void
main (void)
{

exit(0);
}

See Also
atexit()

Return Value
Never returns.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 297

Library Functions

 10
EXP
Synopsis

#include <math.h>

double exp (double f)

Description
The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also
log(), log10(), pow()
298

 10
FABS
Synopsis

#include <math.h>

double fabs (double f)

Description
This routine returns the absolute value of its double argument.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also
abs()
HI-TECH C Z80 compiler 299

Library Functions

 10
FCLOSE
Synopsis

#include <stdio.h>

int fclose (FILE * stream)

Description
This routine closes the specified I/O stream. The value stream should be a token returned by a
previous call to fopen().

Example
#include <stdio.h>

void
main (int argc, char ** argv)
{

FILE * fp;

if(argc > 1) {
if(!(fp = fopen(argv[1], "r")))

perror(argv[1]);
else {

fprintf(stderr, "Opened %s\n", argv[1]);
fclose(fp);

}
}

}

See Also
fopen(), fread(), fwrite()

Return Value
Zero is returned on a successful close, EOF otherwise.

Note
This routine is not usable in a ROM based system.
300

 10
FDOPEN
Synopsis

#include <stdio.h>

FILE * fdopen (int fd, const char * mode)

Description
Where it is desired to associate a stdio stream with a low-level file descriptor that already refers to an
open file, this function may be used. It will return a pointer to a FILE structure which references the
specified low-level file descriptor, as though the function fopen() had been called. The mode
argument is the same as for fopen().

Example
#include <stdio.h>

void
main (void)
{

FILE * fp;

/* 3 is the device AUX */

fp = fdopen(3, "w");
fprintf(fp, "AUX test line\n");

}

See Also
fopen(), freopen(), close()

Return Value
NULL is returned if a FILE structure could not be allocated

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 301

Library Functions

 10
FEOF, FERROR
Synopsis

#include <stdio.h>

int feof (FILE * stream)
int ferror (FILE * stream)

Description
These macros test the status of the end-of-file and error bits respectively for the specified stream. Each
will be true if the corresponding flag is set. The macros are defined in stdio.h. The value stream
must be a token returned by a previous fopen() call.

Example
#include <stdio.h>

void
main (void)
{

while(!feof(stdin))
getchar();

}

See Also
fopen(), fclose()

Return Value
The feof() function returns non-zero if the end-of-file indicator is set for stream.
The function ferror() returns non zero if the error indicator is set for stream.

Note
This routine is not usable in a ROM based system.
302

 10
FFLUSH
Synopsis

#include <stdio.h>

int fflush (FILE * stream)

Description
The fflush() function will output to the disk file or other device currently open on the specified
stream the contents of the associated buffer. This is typically used for flushing buffered standard
output in interactive applications. Normally stdout is opened in line buffered mode, and is flushed
before any input is done on a stdio stream, but if input is to be done via console I/O routines, it may be
necessary to call fflush() first.

Example
#include <stdio.h>
#include <conio.h>

void
main (void)
{

printf("press a key: ");
fflush(stdout);
getch();

}

See Also
fopen(), fclose()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 303

Library Functions

 10
FGETC
Synopsis

#include <stdio.h>

int fgetc (FILE * stream)

Description
The fgetc() function returns the next character from the input stream. If end-of-file is encountered
EOF will be returned. It is for this reason that the function is declared as an integer. The integer EOF is
not a valid byte, thus end-of-file is distinguishable from reading a byte, of all 1 bits, from the file. The
routine fgetc() is the non-macro version of getc().

Example
#include <stdio.h>

void
main (void)
{

FILE * fp;
int c;

fp = fopen("file.dat", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF)
fputc(c, stdout);

fclose(fp);
}

}

See Also
fopen(), fclose(), fputc(), getc(), putc()

Return Value
A character from the input stream, or EOF on end-of-file.

Note
This routine is not usable in a ROM based system.
304

 10
FGETS
Synopsis

#include <stdio.h>

char * fgets (char * s, int n, FILE * stream)

Description
The fgets() function places in the buffer s up to n-1 characters from the input stream. If a newline
is seen in the input before the correct number of characters is read, then fgets() will return
immediately. The newline will be left in the buffer. The buffer will be null terminated in any case.

Example
#include <stdio.h>

void
main (void)
{

char buffer[128];

while(fgets(buffer, sizeof buffer, stdin))
fputs(buffer, stdout);

}

Return Value
A successful fgets() will return its first argument; NULL is returned on end-of-file or error.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 305

Library Functions

 10
FILENO
Synopsis

#include <stdio.h>

int fileno (FILE * stream)

Description
The fileno() routine is a macro from stdio.h which yields the file descriptor associated with
stream. It is mainly used when it is desired to perform some low-level operation on a file, opened as
a stdio stream.

Example
#include <stdio.h>
#include <unixio.h>
#include <stdlib.h>
#include <sys.h>

void
main (int argc, char ** argv)
{

FILE * fp;

if(argc < 3) {
fprintf(stderr, "Usage: fd2 stderr_file command ...\n");
exit(1);

}
if(!(fp = fopen(argv[1], "w"))) {

perror(argv[1]);
exit(1);

}
close(2);
dup(fileno(fp)); /* make stderr reference file */
fclose(fp);
spawnvp(argv[2], argv+2);
close(2);

}

See Also
fopen(), fclose(), open(), close(), dup()
306

 10
Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 307

Library Functions

 10
FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description
This routine returns the largest whole number not greater than f.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}
308

 10
FOPEN
Synopsis

#include <stdio.h>

FILE * fopen (const char * name, const char * mode)

Description
The fopen() function attempts to open a file for reading or writing (or both) according to the mode
string supplied. The mode string is interpreted as follows:

r The file is opened for reading if it exists. If the file does not exist the call fails.

r+ If the file exists it is opened for reading and writing. If the file does not already exist the call fails.

w The file is created if it does not exist, or truncated if it does. It is then opened for writing.

w+ The file is created if it does not already exist, or truncated if it does. The file is opened for reading
and writing.

a The file is created if it does not already exist, and opened for writing. All writes will be dynamically
forced to the end of the file, thus this mode is known as append mode.

a+ The file is created if it does not already exist, and opened for reading and writing. All writes to
the file will be dynamically forced to the end of the file, i.e. while any portion of the file may be
read, all writes will take place at the end of the file and will not overwrite any existing data. Calling
fseek() in an attempt to write at any other place in the file will not be effective.

The "b" modifier may be appended to any of the above modes, e.g. "r+b" or "rb+" are equivalent.
Adding the "b" modifier will cause the file to be opened in binary rather than ASCII mode. Opening in
ASCII mode ensures that text files are read in a manner compatible with the Unix-derived conventions
for C programs, i.e. that text files contain lines delimited by newline characters. The special treatment
of read or written characters varies with the operating system, but includes some or all of the following:

NEWLINE (LINE FEED) - Converted to carriage return, line feed on output.

RETURN - Ignored on input, inserted before newline on output.

CTRL-Z - Signals end-of-file on input, appended on fclose() on output if necessary on CP/M.
HI-TECH C Z80 compiler 309

Library Functions

 10

g
 same
e
diately

 an
hould

Opening a file in binary mode will allow each character to be read just as written, but because the exact
size of a file is not known to CP/M, the file may contain more bytes than were written to it. See open()
for a description of what constitutes a file name.

When using one of the read/write modes (with a ’+’ character in the string), although they permit readin
and writing on the same stream, it is not possible to arbitrarily mix input and output calls to the
stream. At any given time a stream opened with a "+" mode will be in either an input or output state. Th
state may only be changed when the associated buffer is empty, which is only guaranteed imme
after a call to fflush() or one of the file positioning functions fseek() or rewind(). The buffer
will also be empty after encountering EOF while reading a binary stream. It is recommended that
explicit call to fflush() be used to ensure this situation. Thus after reading from a stream you s
call fflush() or fseek() before attempting to write on that stream, and vice versa.

Example
#include <stdio.h>

void
main (int argc, char ** argv)
{

FILE * fp;

if(argc > 1) {
if(!(fp = fopen(argv[1], "r")))

perror(argv[1]);
else {

fprintf(stderr, "Opened %s\n", argv[1]);
fclose(fp);

}
}

}

See Also
fclose(), fgetc(), fputc(), freopen(), fread(), fflush(), fwrite(),
fseek()

Return Value
The fopen() routine returns a file pointer to the object, if it fails it will return a null pointer.

Note
This routine is not usable in a ROM based system.
310

 10
FPRINTF, VFPRINTF
Synopsis

#include <stdio.h>

int fprintf (FILE * stream, const char * fmt, ...)

#include <stdarg.h>
#include <stdio.h>

int vfprintf (FILE * stream, const char * fmt, va_list va_arg)

Description
The fprintf() function performs formatted printing on the specified stream. Refer to printf()
for the details of the available formats. The vfprintf() function is similar to fprintf() but takes
a variable argument list pointer rather than a list of arguments. See the description of the va_start()
function for more information on variable argument lists.

Example
#include <stdio.h>

void
main (int argc, char ** argv)
{

FILE * fp;

if(argc > 1) {
if(!(fp = fopen(argv[1], "r")))

perror(argv[1]);
else {

fprintf(stderr, "Opened %s\n", argv[1]);
fclose(fp);

}
}

}

See Also
printf(), fscanf(), sscanf(), sprintf()

Return Value
It returns the number of characters transmitted or a negative number if it fails.
HI-TECH C Z80 compiler 311

Library Functions

 10
Note
This routine is not usable in a ROM based system.
312

 10
FPUTC
Synopsis

#include <stdio.h>

int fputc (int c, FILE * stream)

Description
The character c is written to the supplied stream. This is the non-macro version of putc().

Example
#include <stdio.h>

void
main (void)
{

FILE * fp;
int c;

fp = fopen("file.dat", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF)
fputc(c, stdout);

fclose(fp);
}

}

See Also
putc(), fgetc(), fopen(), fflush()

Return Value
The character is returned if it was successfully written, EOF is returned otherwise.

Note
Note that "written to the stream" may mean only placing the character in the buffer associated with the
stream.
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 313

Library Functions

 10
FPUTS
Synopsis

#include <stdio.h>

int fputs (const char * s, FILE * stream)

Description
The null terminated string s is written to the stream. No newline is appended (cf. puts()).

Example
#include <stdio.h>

void
main (void)
{

fputs("This is a line\n", stdout);
}

See Also
puts(), fgets(), fopen(), fclose()

Return Value
The return value is zero for success, EOF for error.

Note
This routine is not usable in a ROM based system.
314

 10

 return
FREAD
Synopsis

#include <stdio.h>

int fread (void * buf, size_t size, size_t cnt, FILE * stream)

Description
The fread() function will read up to cnt objects, each of length size, into memory at buf from
the stream. No word alignment in the stream is assumed or necessary. The read is done via
successive getc()’s.

Example
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

i = fread(buf, 1, sizeof(buf), stdin);
printf("Read %d bytes\n", i);

}

See Also
fwrite(), fopen(), fclose(), getc()

Return Value
The return value is the number of objects read. If none is read, zero will be returned. Note that a
value less than cnt, but greater than zero, may not represent an error (cf. fwrite()).

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 315

Library Functions

 10
FREE
Synopsis

#include <stdlib.h>

void free (void * ptr)

Description
The free() function deallocates the block of memory at ptr, which must have been obtained from a
call to malloc() or calloc().

Example
#include <stdlib.h>
#include <stdio.h>

struct test {
int a[20];

} * ptr;

/* Allocate space for 20 structures. */
void
main (void)
{

ptr = calloc(20, sizeof(struct test));
if(!ptr)

printf("Failed\n");
else

free(ptr);
}

See Also
malloc(), calloc()
316

 10
FREOPEN
Synopsis

#include <stdio.h>

FILE * freopen (const char * name, const char * mode, FILE * stream)

Description
The freopen() function closes the given stream (if open) then re-opens the stream attached to the
file, described by name. The mode of opening is given by mode. This function is commonly used to
attach stdin or stdout to a file, as in the following example.

Example
#include <stdio.h>

void
main (void)
{

char buf[80];

if(!freopen("test.fil", "r", stdin))
perror("test.fil");

if(gets(buf))
puts(buf);

}

See Also
fopen(), fclose()

Return Value
It either returns the stream argument, if successful, or NULL if not.
See fopen() for more information.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 317

Library Functions

 10
FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description
The frexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval [0.5,
1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the result
are zero.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also
ldexp()
318

 10
FSCANF, VFSCANF
Synopsis

#include <stdio.h>

int fscanf (FILE * stream, const char * fmt, ...)

#include <stdarg.h>
#include <stdio.h>

int vfscanf (FILE * stream, const char * fmt, va_list va_arg)

Description
This routine performs formatted input from the specified stream. See scanf() for a full description
of the behaviour of the routine.
The vfscanf() function is similar to fscanf() but takes a variable list pointer rather than a list of
arguments. See the description of va_start() for more information on variable argument lists.

Example
#include <stdio.h>

void
main (void)
{

int i;

printf("Enter a number: ");
fscanf(stdin, "%d", &i);
printf("Read %d\n", i);

}

See Also
scanf(), sscanf(), fopen(), fclose()

Return Value
The number of values assigned, or EOF if an error occurred and no items were converted.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 319

Library Functions

 10
FSEEK
Synopsis

#include <stdio.h>

int fseek (FILE * stream, long offs, int wh)

Description
The fseek() function positions the "file pointer" (i.e. a pointer to the next character to be read or
written) of the specified stream as follows:

wh resultant location
 0 offs
 1 offs+previous location
 2 offs+length of file

It should be noted that offs is a signed value. Thus the 3 allowed modes give positioning relative to
the beginning of the file, the current file pointer and the end of the file respectively. Note however that
positioning beyond the end of the file is legal, but will result in an end-of-file indication if an attempt is
made to read data there. It is quite in order to write data beyond the previous end-of-file. The fseek()
function correctly accounts for any buffered data. The current file position can be determined with the
function ftell().

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

FILE * fp;

/* open file for read/write */
fp = fopen("test.fil", "r+");
if(!fp)

exit(1);
fseek(fp,0L, 2); /* seek to end */
fputs("Another line!\n", fp);
fclose(fp);

}
320

 10
See Also
lseek(), fopen(), fclose(), ftell()

Return Value
EOF is returned if the positioning request could not be satisfied, otherwise zero.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 321

Library Functions

 10
FTELL
Synopsis

#include <stdio.h>

long ftell (FILE * stream)

Description
This function returns the current position of the conceptual read/write pointer associated with stream.
This is the position relative to the beginning of the file of the next byte to be read from or written to the
file.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

FILE * fp;

fp = fopen("test.fil", "r");
if(!fp)

exit(1);
fseek(fp, 0L, 2); /* seek to end */
printf("size = %ld\n", ftell(fp));

}

See Also
fseek()

Return Value
A pointer to the current byte read/write position in the given stream.

Note
This routine is not usable in a ROM based system.
322

 10
FWRITE
Synopsis

#include <stdio.h>

int fwrite (const void * buf, size_t size, size_t cnt, FILE * stream)

Description
The fwrite() function accepts cnt objects of length size bytes to be written from memory at buf,
to the specified stream.

Example
#include <stdio.h>

void
main (void)
{

if(fwrite("a test string\n", 1, 14, stdout) != 14)
fprintf(stderr, "Fwrite failed\n");

}

See Also
fread(), fopen(), fclose()

Return Value
The number of whole objects written will be returned, or zero if none could be written. Any return value
not equal to cnt should be treated as an error (cf. fread()).

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 323

Library Functions

 10
GETC
Synopsis

#include <stdio.h>

int getc (FILE * stream)

Description
One character is read from the specified stream and returned. This is the macro version of fgetc(),
and is defined in stdio.h.

Example
#include <stdio.h>

void
main (void)
{

int i;

while((i = getc(stdin)) != EOF)
putchar(i);

}

Return Value
EOF will be returned on end-of-file or error.

Note
This routine is not usable in a ROM based system.
324

 10
GETCH, GETCHE
Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description
The getch() function reads a single character from the console keyboard and returns it without
echoing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied. By
default, the library contains a version of getch() that will interface to the Lucifer Debugger. The user
should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O routines.
Other modules may also be supplied, e.g. ser180.c has routines for the serial port in a Z180.

Example
#include <conio.h>

void
main (void)
{

char c;

while((c = getche()) != ’\n’)
continue;

}

See Also
cgets(), cputs(), ungetch()
HI-TECH C Z80 compiler 325

Library Functions

 10
GETCHAR
Synopsis

#include <stdio.h>

int getchar (void)

Description
The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that
under normal circumstances getchar() will NOT return unless a carriage return has been typed on
the console. To get a single character immediately from the console, use the function getch().

Example
#include <stdio.h>

void
main (void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

}

See Also
getc(), fgetc(), freopen(), fclose()

Note
This routine is not usable in a ROM based system.
326

 10

to be
GETENV
Synopsis

#include <stdlib.h>

char * getenv (const char * s)
extern char ** environ

Description
The getenv() function will search the vector of environment strings for one matching the argument
supplied, and return the value part of that environment string. For example, if the environment contains
the string:

COMSPEC=C:\COMMAND.COM

Thus executing the routine getenv("COMSPEC") will return C:\COMMAND.COM. The global
variable environ is a pointer to an array of pointers to environment strings, terminated by a null
pointer. This array is initialized at startup time under MS-DOS from the environment pointer supplied
when the program was executed. Under CP/M no such environment is supplied, so the first call to
getenv() will attempt to open a file in the current user number on the current drive called ENVIRON.
This file should contain definitions for any environment variables desired to be accessible to the
program, e.g.

HITECH=0:C:

Each variable definition should be on a separate line, consisting of the variable name (conventionally all
in upper case) followed without intervening white space by an equal sign (’=’) then the value
assigned to that variable.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

printf("comspec = %s\n", getenv("COMSPEC"));
}

Return Value
NULL if the specified variable could not be found.
HI-TECH C Z80 compiler 327

Library Functions

 10
Note
This routine is not usable in a ROM based system.
328

 10
GETS
Synopsis

#include <stdio.h>

char * gets (char * s)

Description
The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.
fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(),
and results in getche() being called repeatedly to get characters. Editing (with backspace) is
available.

Example
#include <stdio.h>

void
main (void)
{

char buf[80];

printf("Type a line: ");
if(gets(buf))

puts(buf);
}

See Also
fgets(), freopen(), puts()

Return Value
It returns its argument, or NULL on end-of-file.
HI-TECH C Z80 compiler 329

Library Functions

 10
GETUID
Synopsis

#include <sys.h>

int getuid (void)

Description
The getuid() function returns the current user number. Under CP/M, the current user number
determines the user number associated with an opened or created file, unless overridden by an explicit
user number prefix in the file name.

Example
#include <stdio.h>
#include <sys.h>

void
main (void)
{

printf("Current user number is: %d\n", getuid());
}

See Also
setuid(), open()

Note
This routine is not usable in a ROM based system.
330

 10

uld
y

GETW
Synopsis

#include <stdio.h>

int getw (FILE * stream)

Description
The getw() function returns one word (16 bits for the Z80 and 8086) from the nominated stream.
EOF is returned on end-of-file, but since this is a perfectly good word, the feof() macro should be
used for testing for EOF. When reading the word, no special alignment in the file is necessary, as the read
is done by two consecutive getc()’s. The byte ordering is however undefined. The word read sho
in general have been written by putw(). Do not rely on this function to read binary data written b
another program.

Example
#include <stdio.h>

void
main (void)
{

FILE * fp;
int c;

fp = fopen("file.dat", "r");
if(!feof(fp)) {

while((c = getw(fp)) != EOF)
putw(c, stdout);

fclose(fp);
}

}

See Also
putw(), getc(), fopen(), fclose()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 331

Library Functions

 10
GMTIME
Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description
This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970, into
a broken down time stored in a structure as defined in time.h. The structure is defined in the ’Data
Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also
ctime(), asctime(), time(), localtime()

Return Value
Returns a structure of type tm.

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.
332

 10
Data Types
typedef long time_t;
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
HI-TECH C Z80 compiler 333

Library Functions

 10
IM
Synopsis

#include <intrpt.h>

void im (unsigned char mode)

Description
This function allows setting of the interrupt mode on a Z80 processor. The argument to im() is the
mode number, 0, 1 or 2. If the mode is set to 2, then as a side effect, this routine will set the I register to
point to the base of the interrupt vector table.

Example
#include <intrpt.h>

void
main (void)
{

im(2);

.

.

.

.
}

See Also
ROM_VECTOR(), RAM_VECTOR(), CHANGE_VECTOR(), set_vector()
334

 10
ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description
These macros, defined in ctype.h, test the supplied character for membership in one of several
overlapping groups of characters. Note that all except isascii() are defined for c, if isascii(c)
is true or if c = EOF.

isalnum (c) c is in 0-9 or a-z or A-Z
 isalpha (c) c is in A-Z or a-z
 isascii (c) c is a 7 bit ascii character
 iscntrl (c) c is a control character
 isdigit (c) c is a decimal digit
 islower (c) c is in a-z
 isprint (c) c is a printing char
 isgraph (c) c is a non-space printable character
 ispunct (c) c is not alphanumeric
 isspace (c) c is a space, tab or newline
 isupper (c) c is in A-Z
 isxdigit (c) c is in 0-9 or a-f or A-F

Example
#include <ctype.h>
#include <stdio.h>

void
HI-TECH C Z80 compiler 335

Library Functions

 10
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also
toupper(), tolower(), toascii()
336

 10
ISATTY
Synopsis

#include <unixio.h>

int isatty (int fd)

Description
This tests the type of the file associated with fd. It returns true if the file is attached to a tty-like device.
This would normally be used for testing, if standard input is coming from a file or the console. For
testing stdio streams, use isatty(fileno(stream)).

Example
#include <unixio.h>
#include <stdio.h>

void
main (void)
{

if(isatty(fileno(stdin)))
printf("input not redirected\n");

else
printf("Input is redirected\n");

}

Return Value
Zero if the stream is associated with a file; one if it is associated with the console or other keyboard type
device.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 337

Library Functions

 10
KBHIT
Synopsis

#include <conio.h>

int kbhit (void)

Description
This function returns 1 if a character has been pressed on the console keyboard, 0 otherwise. Normally
the character would then be read via getch().

Example
#include <conio.h>

void
main (void)
{

int i;

while(!kbhit()) {
cputs("I’m waiting..");
for(i = 0 ; i != 1000 ; i++)

continue;
}

}

See Also
getch(), getche()

Return Value
Returns one if a character has been pressed on the console keyboard, zero otherwise.
338

 10
LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description
The ldexp() function performs the inverse of frexp() operation; the integer i is added to the
exponent of the floating point f and the resultant returned.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also
frexp()

Return Value
The return value is the integer i added to the exponent of the floating point value f.
HI-TECH C Z80 compiler 339

Library Functions

 10
LDIV
Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description
The ldiv() routine divides the numerator by the denominator, computing the quotient and the
remainder. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and the
members of the returned structure are all of type long int.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also
div()

Return Value
Returns a structure of type ldiv_t

Data Types
typedef struct {

long quot; /* quotient */
long rem; /* remainder */

} ldiv_t;
340

 10
LOCALTIME
Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description
The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on
Jan 1, 1970, into a broken down time stored in a structure as defined in time.h. The routine
localtime() takes into account the contents of the global integer time_zone. This should contain
the number of minutes that the local time zone is westward of Greenwich. Since there is no way under
MS-DOS of actually predetermining this value, by default localtime() will return the same result
as gmtime().

Example
#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

See Also
ctime(), asctime(), time()

Return Value
Returns a structure of type tm.
HI-TECH C Z80 compiler 341

Library Functions

 10
Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

Data Types
typedef long time_t;
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
342

 10
LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description
The log() function returns the natural logarithm of f. The function log10() returns the logarithm
to base 10 of f.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also
exp(), pow()

Return Value
Zero if the argument is negative.
HI-TECH C Z80 compiler 343

Library Functions

 10

l

ining
e

LONGJMP
Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description
The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local
goto’s. To use this facility, setjmp() should be called with a jmp_buf argument in some outer leve
function. The call from setjmp() will return 0.

To return to this level of execution, lonjmp() may be called with the same jmp_buf argument from
an inner level of execution. Note however that the function which called setjmp() must still be active
when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack conta
invalid data. The val argument to longjmp() will be the value apparently returned from th
setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
344

 10
inner();
printf("inner returned - bad!\n");

}

See Also
setjmp()

Return Value
The longjmp() routine never returns.

Note
The function which called setjmp() must still be active when longjmp() is called. Breach of this
rule will cause disaster, due to the use of a stack containing invalid data.
HI-TECH C Z80 compiler 345

Library Functions

 10
LSEEK
Synopsis

#include <unixio.h>

long lseek (int fd, long offs, int wh)

Description
This function operates in an analogous manner to fseek(), however it does so on unbuffered low-
level I/O file descriptors, rather than on stdio streams. It also returns the resulting pointer location. Thus
lseek(fd, 0L, 1) returns the current pointer location without moving it.

Example
#include <stdio.h>
#include <stdlib.h>
#include <unixio.h>

void
main (void)
{

int fd;

fd = open("test.fil", 1); /* open for write */
if(fd < 0)

exit(1);
lseek(fd,0L, 2); /* seek to end */
write(fd, "more stuff\r\n", 12);
close(fd);

}

See Also
open(), close(), read(), write()

Return Value
Negative one (-1) is returned on error, the resulting location otherwise.

Note
This routine is not usable in a ROM based system.
346

 10
MALLOC
Synopsis

#include <stdlib.h>

void * malloc (size_t cnt)

Description
The malloc() function attempts to allocate cnt bytes of memory from the "heap", the dynamic
memory allocation area. If successful, it returns a pointer to the block, otherwise zero is returned. The
memory so allocated may be freed with free(), or changed in size via realloc(). The malloc()
routine calls sbrk() to obtain memory, and is in turn called by calloc(). The malloc() function
does not clear the memory it obtains, unlike calloc().

Example
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(80);
if(!cp)

printf("Malloc failed\n");
else {

strcpy(cp, "a string");
printf("block = ’%s’\n", cp);
free(cp);

}
}

See Also
calloc(), free(), realloc()

Return Value
A pointer to the memory if it succeeded; NULL otherwise.
HI-TECH C Z80 compiler 347

Library Functions

 10
MEMCHR
Synopsis

#include <string.h>

void * memchr (const void * block, int val, size_t length)

Description
The memchr() function is similar to strchr() except that instead of searching null terminated
strings, it searches a block of memory specified by length for a particular byte. Its arguments are a
pointer to the memory to be searched, the value of the byte to be searched for, and the length of the block.
A pointer to the first occurrence of that byte in the block is returned.

Example
#include <string.h>
#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void
main (void)
{

char * cp;

cp = memchr(ary, 0x89, sizeof ary);
if(!cp)

printf("not found\n");
else

printf("Found at offset %u\n", cp - (char *)ary);
}

See Also
strchr()

Return Value
A pointer to the first byte matching the argument if one exists; NULL otherwise.
348

 10
MEMCMP
Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description
The memcmp() function compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character. The
ASCII collating sequence is used for the comparison, but the effect of including non-ASCII characters
in the memory blocks on the sense of the return value is indeterminate. Testing for equality is always
reliable.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

printf("Equal\n");
}

See Also
strncpy(), strncmp(), strchr(), memset(), memchr()
HI-TECH C Z80 compiler 349

Library Functions

 10
Return Value
Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal to
or greater than the string pointed to by s2 in the collating sequence.
350

 10
MEMCPY
Synopsis

#include <string.h>

void * memcpy (void * d, const void * s, size_t n)

Description
The memcpy() function copies n bytes of memory starting from the location pointed to by s to the
block of memory pointed to by d. The result of copying overlapping blocks is undefined. The
memcpy() function differs from strcpy() in that it copies a specified number of bytes, rather than
all bytes up to a null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buf[80];

memset(buf, 0, sizeof buf);
memcpy(buf, "a partial string", 10);
printf("buf = ’%s’\n", buf);

}

See Also
strncpy(), strncmp(), strchr(), memset()

Return Value
The memcpy() routine returns its first argument.
HI-TECH C Z80 compiler 351

Library Functions

 10
MEMMOVE
Synopsis

#include <string.h>

void * memmove (void * s1, const void * s2, size_t n)

Description
The memmove() function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also
strncpy(), strncmp(), strchr(), memcpy()

Return Value
The function memmove() returns its first argument.
352

 10
MEMSET
Synopsis

#include <string.h>

void * memset (void * s, int c, size_t n)

Description
The memset() function fills n bytes of memory starting at the location pointed to by s with the byte c.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char abuf[20];

strcpy(abuf, "This is a string");
memset(abuf, ’x’, 5);
printf("buf = ’%s’\n", abuf);

}

See Also
strncpy(), strncmp(), strchr(), memcpy(), memchr()
HI-TECH C Z80 compiler 353

Library Functions

 10
MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description
The modf() function splits the argument value into integral and fractional parts, each having the
same sign as value. For example, -3.17 would be split into the intergral part (-3) and the fractional part
(-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value
The signed fractional part of value.
354

 10

 by
ing
OPEN
Synopsis

#include <unixio.h>

int open (const char * name, int mode)

Description
The open() function is the fundamental means of opening files for reading and writing. The file
specified by name is sought, and if found is opened for reading, writing or both. The variable mode is
encoded as follows:

Mode Meaning
 0 Open for reading only
 1 Open for writing only
 2 Open for both reading and writing

The file must already exist - if it does not, creat() should be used to create it. On a successful open,
a file descriptor is returned. This is a non-negative integer which may be used to refer to the open file
subsequently. If the open fails, negative one (-1) is returned. Under MS-DOS the syntax of filenames are
standard MS-DOS. The syntax of a CP/M filename is:

[uid:][drive:]name.type

where uid is a decimal number 0 to 15, drive is a letter A to P or a to p, name is 1 to 8 characters
and type is 0 to 3 characters. Though there are few inherent restrictions on the characters in the name
and type, it is recommended that they be restricted to the alphanumerics and standard printing
characters. Use of strange characters may cause problems in accessing and/or deleting the file.

One or both of uid: and drive: may be omitted; if both are supplied, the uid: must come first. Note
that the ’[’ and ’]’ are meta-symbols only. Some examples are:

fred.dat
 file.c
 0:xyz.com
 0:a:file1.p
 a:file2.

If the uid: is omitted, the file will be sought with uid equal to the current user number, as returned
getuid(). If drive: is omitted, the file will be sought on the currently selected drive. The follow
special file names are recognized:
HI-TECH C Z80 compiler 355

Library Functions

 10
lst: Accesses the list device - write only
 pun: Accesses the punch device - write only
 rdr: Accesses the reader device - read only
 con: Accesses the system console - read/write

File names may be in any case - they are converted to upper case during processing of the name.
MS-DOS filenames may be any valid MS-DOS version 2.xx or higher filename, e.g.

fred.nrk
 A:\HITECH\STDIO.H

The special device names (e.g. CON, LST) are also recognized. These do not require (and should not
have) a trailing colon.

Example
#include <stdio.h>
#include <stdlib.h>
#include <unixio.h>

void
main (void)
{

int fd;

fd = open("test.fil", 1); /* open for write */
if(fd < 0)

exit(1);
lseek(fd,0L, 2); /* seek to end */
write(fd, "more stuff\r\n", 12);
close(fd);

}

See Also
close(), fopen(), fclose(), read(), write(), creat()

Return Value
If successful a non negative number (file descriptor), or negative one (-1) if it fails.

Note
This routine is not usable in a ROM based system.
356

 10
PERROR
Synopsis

#include <stdio.h>

void perror (const char * s)

Description
This routine will print on the stderr stream the argument s, followed by a descriptive message detailing
the last error returned from a DOS system call. The error number is retrieved from the global variable
errno. The perror() is of limited usefulness under CP/M as it does not give as much error
information as under MS-DOS.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (int argc, char ** argv)
{

if(argc < 2)
exit(0);

if(!freopen(argv[1], "r", stdin))
perror(argv[1]);

}

See Also
strerror()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 357

Library Functions

 10
PERSIST_CHECK, PERSIST_VALIDATE
Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description
The persist_check() function is used with non-volatile RAM variables, declared with the
persistent qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a
p rev i o u s ca l l t o persist_validate() a n d a c h e ck s u m a l s o c a l c u la t e d b y
persist_validate(). If the magic number and checksum are correct, it returns true (non-zero). If
either are incorrect, it returns zero. In this case it will optionally zero out and re-validate the non-volatile
RAM area (by calling persist_validate()). This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example
#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */
}

Return Value
FALSE (zero) if the NV-RAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.
358

 10
POW
Synopsis

#include <math.h>

double pow (double f, double p)

Description
The pow() function raises its first argument, f, to the power p.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also
log(), log10(), exp()

Return Value
f to the power of p.
HI-TECH C Z80 compiler 359

Library Functions

 10

 the
 at the
t digit
s, the
up this

ure of
sence of

PD
m the

mat is
PRINTF, VPRINTF
Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)

Description
The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()). The
printf() routine is passed a format string, followed by a list of zero or more arguments. In the format
string are conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces a
conversion, followed by an optional width specification m. The n specification is an optional precision
specification (introduced by the dot) and c is a letter specifying the type of the conversion.

A minus sign (’-’) preceding m indicates left rather than right adjustment of the converted value in
field. Where the field width is larger than required for the conversion, blank padding is performed
left or right as specified. Where right adjustment of a numeric conversion is specified, and the firs
of m is 0, then padding will be performed with zeroes rather than blanks. For integer format
precision indicates a minimum number of digits to be output, with leading zeros inserted to make
number if required.

A hash character (#) preceding the width indicates that an alternate format is to be used. The nat
the alternate format is discussed below. Not all formats have alternates. In those cases, the pre
the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From within H
this can be forced by selecting the "Float formats in printf" selection in the options menu. Fro
command line driver, use the option -LF.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is omitted
it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate for
specified.
360

 10
e
Print the corresponding argument in scientific notation. Otherwise similar to f.

g
Use e or f format, whichever gives maximum precision in minimum width. Any trailing zeros after the
decimal point will be removed, and if no digits remain after the decimal point, it will also be removed.

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the case of
d, unsigned otherwise. The precision value is the total number of digits to print, and may be used to force
leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. Preceding the key letter
with an l indicates that the value argument is a long integer. The letter X prints out hexadecimal numbers
using the upper case letters A-F rather than a-f as would be printed when using x. When the alternate
format is specified, a leading zero will be supplied for the octal format, and a leading 0x or 0X for the
hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from the
string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus %% will produce a single
percent sign.

The vprintf() function is similar to printf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument
lists. An example of using vprintf() is given below.

Example

printf("Total = %4d%%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */
HI-TECH C Z80 compiler 361

Library Functions

 10
#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

i = 3;
error("testin g 1 2 %d", i);

}

See Also
fprintf(), sprintf()

Return Value
The printf() and vprintf() functions return the number of characters written to stdout.
362

 10
PUTC
Synopsis

#include <stdio.h>

int putc (int c, FILE * stream)

Description
The putc() function is the macro version of fputc() and is defined in stdio.h. It places the
supplied character onto the specified I/O stream.

Example
#include <stdio.h>

char * x = "this is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putc(*x++, stdout);
putc(’\n’, stdout);

}

See Also
fputc(), getc(), fopen(), fclose(), putch()

Return Value
The character passed as argument, or on error EOF.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 363

Library Functions

 10
PUTCH
Synopsis

#include <conio.h>

void putch (char c)

Description
The putch() function outputs the character c to the console screen, prepending a carriage return if
the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls. In an
embedded system this routine, and associated others, will be defined in a hardware dependent way. The
standard putch() routines in the embedded library interface either to a serial port or to the Lucifer
Debugger.

Example
#include <conio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putch(*x++);
putch(’\n’);

}

See Also
cgets(), cputs(), getch(), getche()
364

 10
PUTCHAR
Synopsis

#include <stdio.h>

int putchar (int c)

Description
The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example
#include <stdio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putchar(*x++);
putchar(’\n’);

}

See Also
putc(), getc(), freopen(), fclose()

Return Value
The character passed as argument, or EOF if an error occurred.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 365

Library Functions

 10
PUTS
Synopsis

#include <stdio.h>

int puts (const char * s)

Description
The puts() function writes the string s to the stdout stream, appending a newline. The null character
terminating the string is not copied.

Example
#include <stdio.h>

void
main (void)
{

puts("Hello, world!");
}

See Also
fputs(), gets(), freopen(), fclose()

Return Value
EOF is returned on error; zero otherwise.
366

 10
PUTW
Synopsis

#include <stdio.h>

int putw (int w, FILE * stream)

Description
The putw() function copies the word w to the given stream. It returns w, except on error, in which
case EOF is returned. Since this is a good integer, ferror() should be used to check for errors. The
routine getw() may be used to read in integer written by putw().

Example
#include <stdio.h>

void
main (void)
{

FILE * fp;
int c;

fp = fopen("file.dat", "r");
if(!feof(fp)) {

while((c = getw(fp)) != EOF)
putw(c, stdout);
fclose(fp);

}
}

See Also
getw(), fopen(), fclose()

Return Value
The return value is w, except on error, then the return value is EOF.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 367

Library Functions

 10
QSORT
Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,

int (*func)(const void *, const void *))

Description
The qsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,
each of length width bytes, located contiguously in memory at base. The argument func is a pointer
to a function used by qsort() to compare items. It calls func with pointers to two items to be
compared. If the first item is considered to be greater than, equal to or less than the second then func
should return a value greater than zero, equal to zero or less than zero respectively.

Example
#include <stdio.h>
#include <stdlib.h>

int aray[] = {
567, 23, 456, 1024, 17, 567, 66

};

int
sortem (const void * p1, const void * p2)
{

return *(int *)p1 - *(int *)p2;
}

void
main (void)
{

register int i;

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);
putchar(’\n’);

}

368

 10
Note
The function parameter must be a pointer to a function of type similar to:
 int func (const void *, const void *)
 i.e. it must accept two const void * parameters, and must be prototyped.
HI-TECH C Z80 compiler 369

Library Functions

 10
RAM_VECTOR, CHANGE_VECTOR, READ_RAM_VECTOR
Synopsis

#include <intrpt.h>

void RAM_VECTOR (unsigned vector, isr func)
void CHANGE_VECTOR (unsigned vector, isr func)
void (* READ_RAM_VECTOR (unsigned vector)(void))

Description
The RAM_VECTOR(), CHANGE_VECTOR() and READ_RAM_VECTOR() macros are used to
initialize, modify and read interrupt vectors which are directed through internal RAM based interrupt
vectors. These macros should only be used for vectors which need to be modifiable, so as to point at
different interrupt functions at different points in the program. The CHANGE_VECTOR() and
READ_RAM_VECTOR() macros should only be used with interrupt vectors which have been initialized
using RAM_VECTOR(), otherwise garbage will be returned.

Please refer to the section "Interrupt Handling in C" in this manual for further details.

Example
volatile unsigned char wait_flag;

interrupt void wait_handler(void)
{

++wait_flag;
}

void wait_for_serial_intr(void)
{

interrupt void (*old_handler)(void);

di();
old_handler = READ_RAM_VECTOR(RXI);
wait_flag = 0;
CHANGE_VECTOR(RXI, wait_handler);

See Also
di(), ei(), ROM_VECTOR()

Note
These macros, for the Z80/Z180, may only be used with mode 2 interrupts.
370

 10
RAND
Synopsis

#include <stdlib.h>

int rand (void)

Description
The rand() function is a pseudo-random number generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using the srand() call.
The example shows use of the time() function to generate a different starting point for the sequence
each time.

Example
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also
srand()

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.
HI-TECH C Z80 compiler 371

Library Functions

 10
READ
Synopsis

#include <unixio.h>

size_t read (int fd, void * buf, size_t cnt)

Description
The read() function will read from the file associated with fd up to cnt bytes into a buffer located
at buf. It returns the number of bytes actually read. A zero return indicates end-of-file. A negative return
indicates error. The argument fd should have been obtained from a previous call to open(). It is
possible for read() to return less bytes than requested, e.g. when reading from the console, in which
case read() will read one line of input.

Example
#include <stdio.h>
#include <unixio.h>

void
main (void)
{

char buf[80];
int i;

/* read from stdin */

i = read(0, buf, sizeof(buf));
printf("Read %d bytes\n", i);

}

See Also
open(), close(), write()

Return Value
The number of bytes read; zero on end-of-file, negative one (-1) on error. Be careful not to misinterpret
a read of > 32767 as a negative return value.

Note
This routine is not usable in a ROM based system.
372

 10
REALLOC
Synopsis

#include <stdlib.h>

void * realloc (void * ptr, size_t cnt)

Description
The realloc() function frees the block of memory at ptr, which should have been obtained by a
previous call to malloc(), calloc() or realloc(), then attempts to allocate cnt bytes of
dynamic memory, and if successful copies the contents of the block of memory located at ptr into the
new block.

At most, realloc() will copy the number of bytes which were in the old block, but if the new block
is smaller, will only copy cnt bytes.

Example
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(255);
if(gets(cp))

cp = realloc(cp, strlen(cp)+1);
printf("buffer now %d bytes long\n", strlen(cp)+1);

}

See Also
malloc(), calloc()

Return Value
A pointer to the new (or resized) block. NULL if the block could not be expanded. A request to shrink a
block will never fail.
HI-TECH C Z80 compiler 373

Library Functions

 10
REMOVE
Synopsis

#include <stdio.h>

int remove (const char * s)

Description
The remove() function will attempt to remove the file named by the argument s from the directory.

Example
#include <stdio.h>

void
main (void)
{

if(remove("test.fil") < 0)
perror("test.fil");

}

See Also
unlink()

Return Value
Zero on success, negative one (-1) on error.

Note
This routine is not usable in a ROM based system.
374

 10
RENAME
Synopsis

#include <stdio.h>

int rename (const char * name1, const char * name2)

Description
The file named by name1 will be renamed to name2.

Example
#include <stdio.h>

void
main (void)
{

if(rename("test.fil", "test1.fil"))
perror("Rename");

}

See Also
open(), close(), unlink()

Return Value
Negative one (-1) will be returned if the rename was not successful, zero if the rename was performed.

Note
Rename is not permitted across drives or directories.
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 375

Library Functions

 10
REWIND
Synopsis

#include <stdio.h>

int rewind (FILE * stream)

Description
This function will attempt to re-position the read/write pointer of the nominated stream to the
beginning of the file. This call is equivalent to fseek(stream, 0L, 0).

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

char buf[80];

if(!freopen("test.fil", "r", stdin))
exit(1);

gets(buf);
printf("got ’%s’\n", buf);
rewind(stdin);
gets(buf);
printf("Got ’%s’ again\n", buf);

}

See Also
fseek(), ftell()

Return Value
A return value of negative one (-1) indicates that the attempt was not successful, perhaps because the
stream is associated with a non-random access file such as a character device.

Note
This routine is not usable in a ROM based system.
376

 10
ROM_VECTOR
Synopsis

#include <intrpt.h>

void ROM_VECTOR (unsigned vector, isr func)

Description
The ROM_VECTOR() macro is used to set up a "hard coded" ROM vector, which points to an interrupt
handler. This macro does not generate any code which is executed at run-time, so it can be placed
anywhere in your code. ROM_VECTOR() generates in-line assembler code, so the vector address passed
to it may be in any format acceptable to the assembler.

Please refer to the section "Interrupt Handling in C", in this manual for further details.

See Also
di(), ei(), RAM_VECTOR()

Note
These macros, for the Z80/Z180, may only be used with mode 2 interrupts.
HI-TECH C Z80 compiler 377

Library Functions

 10
SBRK
Synopsis

#include <sys.h>

void * sbrk (int incr)

Description
The sbrk() function increments the current highest memory location allocated to the program by
incr bytes. It returns a pointer to the previous highest location. Thus sbrk(0) returns a pointer to the
current highest location, without altering its value. This is a low-level routine not intended to be called
by user code. Use malloc() instead.

See Also
brk(), malloc(), calloc(), realloc(), free()

Return Value
If there is insufficient memory to satisfy the request, (void *) -1 (negative one) is returned.

Note
This routine is not usable in a ROM based system.
378

 10

a
gnment
 if there
s.

h was
zed.

 field

 pointer
. The

f a field
SCANF, VSCANF
Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description
The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar
functions are available for streams in general, and for strings. The function vscanf() is similar, but
takes a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the format
string must match a character in the input; however a space character in the format string will match zero
or more "white space" characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assignment
suppression character (’*’), optionally followed by a numerical maximum field width, followed by
conversion specification character. Each conversion specification, unless it incorporates the assi
suppression character, will assign a value to the variable pointed at by the next argument. Thus
are two conversion specifications in the fmt string, there should be two additional pointer argument

The conversion characters are as follows:

o x d
Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field widt
supplied, take at most that many characters from the input. A leading minus sign will be recogni

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The
argument must be a pointer to char. The field width will limit the number of characters copied
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. I
HI-TECH C Z80 compiler 379

Library Functions

 10
width is specified, then copy that many characters. This differs from the s format in that white space
does not terminate the character sequence.

The conversion characters o, x, u, d and f may be preceded by an l to indicate that the corresponding
pointer argument is a pointer to long or double as appropriate. A preceding h will indicate that the
pointer argument is a pointer to short rather than int.

Example
scanf("%d %s", &a, &c)

with input " 12s"
will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)
with input " abcd -3.5"
will assign " abc" to c, and -3.5 to f.

See Also
fscanf(), sscanf(), printf(), va_arg()

Return Value
The scanf() function returns the number of successful conversions; EOF is returned if end-of-file was
seen before any conversions were performed.
380

 10
SETJMP
Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description
The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further
information.

Example
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
inner();
printf("inner returned - bad!\n");

}

See Also
longjmp()
HI-TECH C Z80 compiler 381

Library Functions

 10
Return Value
The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().
382

 10
SETUID
Synopsis

#include <cpm.h>

int setuid (unsigned char uid)

Description
The setuid() function will set the current user number to uid. The uid argument should be a
number in the range 0-15.

Example
#include<stdio.h>
#include<cpm.h>

void
main (void)
{

setuid(2);
printf("Current user number is: %d\n", getuid());

}

See Also
getuid()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 383

Library Functions

 10
SETVBUF, SETBUF
Synopsis

#include <stdio.h>

int setvbuf (FILE * stream, char * buf, int mode, size_t size)
void setbuf (FILE * stream, char * buf)

Description
The setvbuf() function allows the buffering behaviour of a stdio stream to be altered. It supersedes
the function setbuf() which is retained for backwards compatibility. The arguments to setvbuf()
are as follows: stream designates the stdio stream to be affected; buf is a pointer to a buffer which
will be used for all subsequent I/O operations on this stream. If buf is NULL, then the routine will
allocate a buffer from the heap if necessary, of size BUFSIZ as defined in stdio.h. The argument
mode may take the values _IONBF, to turn buffering off completely, _IOFBF, for full buffering, or
_IOLBF for line buffering. Full buffering means that the associated buffer will only be flushed when
full, while line buffering means that the buffer will be flushed at the end of each line or when input is
requested from another stdio stream. The argument size is the size of the buffer supplied. By default,
stdout and stdin are line buffered when associated with a terminal-like device, and full buffered
when associated with a file.

If a buffer is supplied by the caller, that buffer will remain associated with that stream even over
fclose(), fopen() calls until another setvbuf() changes it.

Example

#include <stdio.h>

char buffer[8192];

void
main (void)
{

int i, j;

/* set a large buffer for stdout */

setvbuf(stdout, buffer, _IOFBF, sizeof buffer);
for(i = 0 ; i != 2000 ; i++)

if((i % 100) == 0)
printf("i = %4d\n", i);

else
384

 10
for(j = 0 ; j != 1000 ; j++)
continue;

}

See Also
fopen(), freopen(), fclose()

Note
If the buf argument is NULL, then the size is ignored.
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 385

Library Functions

 10

 want

 where
ine
SET_VECTOR
Synopsis

#include <intrpt.h>

isr set_vector (isr * vector, isr func)

Description
This routine allows an interrupt vector to be initialized. The first argument should be the address of the
interrupt vector (not the vector number but the actual address) cast to a pointer to isr, which is a
typedef’d pointer to an interrupt function. The second argument should be the function which you
the interrupt vector to point to. This must be declared using the interrupt type qualifier.

Not all compilers support this routine; the macros ROM_VECTOR(), RAM_VECTOR() and
CHANGE_VECTOR() are used with some processors. These routines are to be preferred even
set_vector() is supported. See intrpt.h or the processor specific manual section to determ
what is supported for a particular compiler.

The example shown sets up a vector for the DOS ctrl-BREAK interrupt.

Example
#include <signal.h>
#include <stdlib.h>
#include <intrpt.h>

static far interrupt void
brkintr (void)
{

exit(-1);
}

#define BRKINT 0x23
#define BRKINTV ((far isr *)(BRKINT * 4))

void
set_trap (void)
{

set_vector(BRKINTV, brkintr);
}

See Also
di(), ei(), ROM_VECTOR(), RAM_VECTOR(), CHANGE_VECTOR()
386

 10
Return Value
The return value of set_vector() is the previous contents of the vector, if set_vector() is im-
plemented as a function. If it is implemented as a macro, it has no return value.

Note
The set_vector() routine is equivalent to ROM_VECTOR() and is present only for compatibility
with version 5 and 6 HI-TECH compilers. It is suggested that ROM_VECTOR() be used in place of
set_vector() for maximum compatibility with future versions of HI-TECH C.

Data Types
typedef interrupt void (*isr)(void)
HI-TECH C Z80 compiler 387

Library Functions

 10

ed
Under
ertain
ith

.
be
 signal
SIGNAL
Synopsis

#include <signal.h>

void (* signal (int sig, void (*func)(int)))(int)

Description
The signal() function provides a mechanism for catching ctrl-C’s (ctrl-BREAK for MS-DOS) typ
on the console during I/O. Under CP/M the console is polled whenever an I/O call is performed.
MS-DOS the polling depends on the setting of the BREAK command, if a ctrl-C is detected a c
action will be performed. The default action is to exit summarily; this may be modified w
signal(). The sig argument to signal may at the present time be only SIGINT, signifying an
interrupt condition. The func argument may be one of SIG_DFL, representing the default action i.e
to exit immediately, SIG_IGN, to ignore ctrl-C’s completely, or the address of a function which will
called with one argument, the number of the signal caught, when a ctrl-C is seen. As the only
supported is SIGINT, this will always be the value of the argument to the called function.

Example
#include <signal.h>
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
catch (int c)
{

longjmp(jb, 1);
}

void
main (void)
{

int i;

if(setjmp(jb)) {
printf("\n\nCaught signal\n");
exit(0);

}

388

 10
signal(SIGINT, catch);
for(i = 0 ;; i++) {

printf("%6d\r", i);
}

}

See Also
exit()

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 389

Library Functions

 10
SIN
Synopsis

#include <math.h>

double sin (double f)

Description
This function returns the sine function of its argument.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also
cos(), tan(), asin(), acos(), atan(), atan2()

Return Value
Sine vale of f.
390

 10
SPRINTF, VSPRINTF
Synopsis

#include <stdio.h>

int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description
The sprintf() function operates in a similar fashion to printf(), except that instead of placing
the converted output on the stdout stream, the characters are placed in the buffer at buf. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

The vsprintf() function is similar to sprintf() but takes a variable argument list pointer rather
than a list of arguments. See the description of va_start() for more information on variable
argument lists.

See Also
printf(), fprintf(), sscanf()

Return Value
Both these routines return the number of characters placed into the buffer.
HI-TECH C Z80 compiler 391

Library Functions

 10
SQRT
Synopsis

#include <math.h>

double sqrt (double f)

Description
The function sqrt(), implements a square root routine using Newton’s approximation.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also
exp()

Return Value
Returns the value of the square root.

Note
A domain error occurs if the argument is negative.
392

 10
SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description
The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence yielded
by rand(). On the z80, a good place to get a truly random seed is from the refresh register. Otherwise
timing a response from the console will do, or just using the system time.

Example
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also
rand()
HI-TECH C Z80 compiler 393

Library Functions

 10
SSCANF, VSSCANF
Synopsis

#include <stdio.h>

int sscanf (const char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsscanf (const char * buf, const char * fmt, va_list ap)

Description
The sscanf() function operates in a similar manner to scanf(), except that instead of the
conversions being taken from stdin, they are taken from the string at buf.

The vsscanf() function takes an argument pointer rather than a list of arguments. See the description
of va_start() for more information on variable argument lists.

See Also
scanf(), fscanf(), sprintf()

Return Value
Returns the value of EOF if an input failure occurs, else returns the number of input items.
394

 10
STAT
Synopsis

#include <stat.h>

int stat (char * name, struct stat * statbuf)

Description
This routine returns information about the file by name. The information returned is operating system
dependent, but may include file attributes (e.g. read only), file size in bytes, and file modification and/
or access times. The argument name should be the name of the file, and may include path names under
DOS, user numbers under CP/M, etc. The argument statbuf should be the address of a structure as
defined in stat.h which will be filled in with the information about the file. The structure of struct
stat is as follows:

{
 short st_mode; /* flags */
 long st_atime;/* access time */
 long st_mtime;/* modification time */
 long st_size; /* file size */
 };

The access and modification times (under DOS these are both set to the modification time) are in
seconds since 00:00:00 Jan 1 1970. The function ctime() may be used to convert this to a readable
value. The file size is self explanatory. The flag bits are as follows:

Flag Meaning

S_IFMT mask for file type
 S_IFDIR file is a directory
 S_IFREG file is a regular file
 S_IREAD file is readable
 S_IWRITE file is writeable
 S_IEXEC file is executable
 S_HIDDEN file is hidden
 S_SYSTEM file is marked system
 S_ARCHIVE file has been written to

HI-TECH C Z80 compiler 395

Library Functions

 10
Example
#include <stdio.h>
#include <stat.h>
#include <time.h>
#include <stdlib.h>

int
main (int argc, char ** argv)
{

struct stat sb;

if(argc > 1) {
if(stat(argv[1], &sb)) {

perror(argv[1]);
exit(1);

}
printf("%s: %ld bytes, modified %s", argv[1],

sb.st_size, ctime(&sb.st_mtime));
}
exit(0);

}

See Also
ctime(), creat(), chmod()

Return Value
The stat() function returns zero on success, negative one (-1) on failure, e.g. if the file could not be
found.

Note
This routine is not usable in a ROM based system.

Data Types
struct stat
{

unsigned long t_ino; /* unused */
unsigned short st_dev; /* unused */
unsigned short st_mode; /* flags */
long st_atime; /* access time */
long st_mtime; /* modification time */
long st_size; /* file size in bytes */

};
396

 10
STRCAT
Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description
This function appends (catenates) string s2 to the end of string s1. The result will be null terminated.
The argument s1 must point to a character array big enough to hold the resultant string.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcmp(), strncat(), strlen()

Return Value
The value of s1 is returned.
HI-TECH C Z80 compiler 397

Library Functions

 10
STRCHR, STRICHR
Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description
The strchr() function searches the string s for an occurrence of the character c. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example
#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also
strrchr(), strlen(), strcmp()

Return Value
A pointer to the first match found, or NULL if the character does not exist in the string.

Note
Although the function takes an integer argument for the character, only the lower 8 bits of the value are
used.
398

 10
STRCMP, STRICMP
Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description
The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with the
standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also
strlen(), strncmp(), strcpy(), strcat()

Return Value
A signed integer less than, equal to or greater than zero.

Note
Other C implementations may use a different collating sequence; the return value is negative, zero or
positive, i.e. do not test explicitly for negative one (-1) or one (1).
HI-TECH C Z80 compiler 399

Library Functions

 10
STRCPY
Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description
This function copies a null terminated string s2 to a character array pointed to by s1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strncpy(), strlen(), strcat(), strlen()

Return Value
The destination buffer pointer s1 is returned.
400

 10
STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description
The strcspn() function returns the length of the initial segment of the string pointed to by s1 which
consists of characters NOT from the string pointed to by s2.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also
strspn()

Return Value
Returns the length of the segment.
HI-TECH C Z80 compiler 401

Library Functions

 10
STRDUP
Synopsis

#include <string.h>

char * strdup (const char * s1)

Description
The strdup() function returns a pointer to a new string which is a duplicate of the string pointed to
by s1. The space for the new string is obtained using malloc(). If the new string cannot be created,
a null pointer is returned.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;

ptr = strdup("This is a copy");
printf("%s\n", ptr);

}

Return Value
Pointer to the new string, or NULL if the new string cannot be created.
402

 10
STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description
The strlen() function returns the number of characters in the string s, not including the null
terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value
The number of characters preceding the null terminator.
HI-TECH C Z80 compiler 403

Library Functions

 10
STRNCAT
Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description
This function appends (catenates) string s2 to the end of string s1. At most n characters will be copied,
and the result will be null terminated. s1 must point to a character array big enough to hold the resultant
string.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcmp(), strcat(), strlen()

Return Value
The value of s1 is returned.
404

 10
STRNCMP, STRNICMP
Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description
The strcmp() function compares its two, null terminated, string arguments, up to a maximum of n
characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.
The comparison is done with the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strcmp("abcxyz", "abcxyz");
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also
strlen(), strcmp(), strcpy(), strcat()

Return Value
A signed integer less than, equal to or greater than zero.

Note
Other C implementations may use a different collating sequence; the return value is negative, zero or
positive, i.e. do not test explicitly for negative one (-1) or one (1).
HI-TECH C Z80 compiler 405

Library Functions

 10
STRNCPY
Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description
This function copies a null terminated string s2 to a character array pointed to by s1. At most n
characters are copied. If string s2 is longer than n then the destination string will not be null terminated.
The destination array must be large enough to hold the entire string, including the null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcat(), strlen(), strcmp()

Return Value
The destination buffer pointer s1 is returned.
406

 10
STRPBRK
Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description
The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value
Pointer to the first matching character, or NULL if no character found.
HI-TECH C Z80 compiler 407

Library Functions

 10
STRRCHR, STRRICHR
Synopsis

#include <string.h>

char * strrchr (const char * s, int c)
char * strrichr (const char * s, int c)

Description
The strrchr() function is similar to the strchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated string
s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also
strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value
A pointer to the character, or NULL if none is found.
408

 10
STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description
The strspn() function returns the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also
strcspn()

Return Value
The length of the segment.
HI-TECH C Z80 compiler 409

Library Functions

 10
STRSTR, STRISTR
Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description
The strstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value
Pointer to the located string or a null pointer if the string was not found.
410

 10
STRTOK
Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description
A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first token,
or NULL if no tokens were found. The inter-token separator character is overwritten by a null character,
which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching from
the end of the last token found, and again return a pointer to the first character of the next token, or NULL
if no further tokens were found.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char * buf = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

Return Value
Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note
The separator string s2 may be different from call to call.
HI-TECH C Z80 compiler 411

Library Functions

 10
TAN
Synopsis

#include <math.h>

double tan (double f)

Description
The tan() function calculates the tangent of f.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also
sin(), cos(), asin(), acos(), atan(), atan2()

Return Value
The tangent of f.
412

 10
TIME
Synopsis

#include <time.h>

time_t time (time_t * t)

Description
This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time in
seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is stored
into the object pointed to by t.

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also
ctime(), gmtime(), localtime(), asctime()

Return Value
This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1, 1970.

Note
The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.
HI-TECH C Z80 compiler 413

Library Functions

 10
TMPFILE
Synopsis

#include <stdio.h>

FILE * tmpfile (void)

Description
This function creates a temporary binary file which is automatically closed and deleted on program
termination.

See Also
fopen()

Return Value
Pointer to the file stream created. A null pointer is returned if the temporary file could not be opened.

Note
The file is opened using the "wb+" mode.
This routine is not usable in a ROM based system.
414

 10
TMPNAM
Synopsis

#inlcude <stdio.h>

char * tmpnam (char * s)

Description
The tmpnam() function generates a valid file name which is different from the names of existing files.
The tmpnam() function may be called up to TMP_MAX times, with a different string generated each
time. The behaviour of tmpnam() is undefined for any further calls to it.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

char * filename;
FILE * fp;

filename = tmpnam(NULL);
if(filename != NULL) {

fp = fopen(filename, "wt");
/* Can be used to create an error report */

fclose(fp);
free(filename);

}
else

printf("Cannot create temp file name\n");
}

Return Value
If the argument is a null pointer, tmpnam() leaves the result in an internal static object and returns a
pointer to that object. Note that subsequent calls to tmpnam() may modify that object. If the argument
is not a null pointer, it is assumed to point to a character of at least L_tmpnam characters. In this case,
the result is written in to the array, and the argument is returned.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 415

Library Functions

 10
TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description
The toupper() function converts its lower case alphabetic argument to upper case, the tolower()
routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed
in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an
alphabetic character.

Example
#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {

printf("%c", tolower(array1[i]));
}
printf("\n");

}

See Also
islower(), isupper(), isascii(), et. al.
416

 10
UNGETC
Synopsis

#include <stdio.h>

int ungetc (int c, FILE * stream)

Description
The ungetc() function will attempt to push back the character c onto the named stream, such that
a subsequent call to the getc() operation will return the character. If the stream is not buffered, at
most one level of push back will be allowed, even this may not be possible. EOF is returned if the
ungetc() function could not be performed.

Example
#include <stdio.h>
#include <ctype.h>

void
main (void)
{

FILE * stream;
int c;
long number = 0;

if(stream = fopen("temp.dat", "r")) {

c = fgetc(stream);
while(isdigit(c)) {

number = number*10 + (c - ’0’);
c = fgetc(stream);

}
ungetc(c, stream);
printf("Read number is = %ld\n", number);
fclose(stream);

}
else

printf("Could not open file.\n");
}

See Also
getc()
HI-TECH C Z80 compiler 417

Library Functions

 10
Return Value
Returns the character pushed back, or EOF if the ungetc() could not be performed.

Note
This routine is not usable in a ROM based system.
418

 10
UNGETCH
Synopsis

#include <conio.h>

void ungetch (char c)

Description
The ungetch() function will push back the character c onto the console stream, such that a
subsequent getch() operation will return the character. At most one level of push back will be
allowed.

See Also
getch(), getche()
HI-TECH C Z80 compiler 419

Library Functions

 10
UNLINK
Synopsis

#include <unixio.h>

int unlink (const char * name)

Description
The unlink() function will remove (delete) the named file, that is, erase the file from its directory.
See open() for a description of the file name construction. Zero will be returned if successful, negative
one if the file did not exist or it could not be removed. The ANSI function remove() is preferred to
unlink().

Example
#include <unixio.h>

void
main (void)
{

if(unlink("test.fil") < 0)
perror("test.fil");

}

See Also
open(), close(), rename(), remove()

Return Value
Zero will be returned if successful, negative one (-1) if the file did not exist or it could not be removed.

Note
This routine is not usable in a ROM based system.
420

 10
VA_START, VA_ARG, VA_END
Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description
These macros are provided to give access in a portable way to parameters to a function represented in a
prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function are
not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these macros, as
it is the starting point for access to further parameters. In a function taking variable numbers of
arguments, a variable of type va_list should be declared, then the macro va_start() invoked
with that variable and the name of parmN. This will initialize the variable to allow subsequent calls of
the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name which
is the type that the next parameter is expected to be. Note that any arguments thus accessed will have
been widened by the default conventions to int, unsigned int or double. For example if a character
argument has been passed, it should be accessed by va_arg(ap, int) since the char will have been
widened to int.

An example is given below of a function taking one integer parameter, followed by a number of other
parameters. In this example the function expects the subsequent parameters to be pointers to char, but
note that the compiler is not aware of this, and it is the programmers responsibility to ensure that correct
arguments are supplied.

Example
#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
HI-TECH C Z80 compiler 421

Library Functions

 10
va_end(ap);
}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}
422

 10
WRITE
Synopsis

#include <unixio.h>

size_t write (int fd, const void * buf, size_t cnt)

Description
The write() function will write from the buffer at buf up to cnt bytes to the file associated with the
file descriptor fd. The number of bytes actually written will be returned. EOF or a value less than cnt
will be returned on error. In any case, any return value not equal to cnt should be treated as an error (cf.
read()).

Example
#include <unixio.h>

void
main (void)
{

write(1, "A test string\r\n", 15);
}

See Also
open(), close(), read()

Return Value
The number of bytes actually written will be returned. EOF or a value less than cnt will be returned on
error.

Note
This routine is not usable in a ROM based system.
HI-TECH C Z80 compiler 423

Library Functions

 10
XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description
The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also
atoi()

Return Value
A signed integer. If no number is found in the string, zero will be returned.
424

 10

 (’) or
ear in
. The
of the

r for a
ed for
f the
 (except
ing the
_GETARGS
Synopsis

#include <sys.h>

 char ** _getargs (char * buf, char * name)
 extern int _argc_

Description
This routine performs I/O redirection (CP/M only) and wild card expansion. Under MS-DOS I/O
redirection is performed by the operating system. It is called from startup code to operate on the
command line if the -R option is used to the C command, but may also be called by user-written code.
If the buf argument is null, it will read lines of text from standard input. If the standard input is a terminal
(usually the console) the name argument will be written to the standard error stream as a prompt. If the
buf argument is not null, it will be used as the source of the string to be processed. The returned value
is a pointer to an array of strings, exactly as would be pointed to by the argv argument to the main()
function. The number of strings in the array may be obtained from the global _argc_.

There will be one string in the array for each word in the buffer processed. Quotes, either single
double (") may be used to include white space in "words". If any wild card characters (? or *) app
a non-quoted word, it will be expanded into a string of words, one for each file matching the word
usual CP/M and DOS conventions are followed for this expansion. On CP/M any occurence
redirection characters > and < outside quotes will be handled in the following manner:

@Hanging list = > name will cause standard output to be redirected to the file name.

@Hanging list = < name will cause standard input to be redirected from the file name.

@Hanging list = >> name will cause standard output to append to file name.

White space is optional between the > or < character and the file name, however it is an erro
redirection character not to be followed by a file name. It is also an error if a file cannot be open
input or created for output. An append redirection (>>) will create the file if it does not exist. I
source of text to be processed is standard input, several lines may be supplied by ending each line
the last) with a backslash (\). This serves as a continuation character. Note that the newline follow
backslash is ignored, and not treated as white space.

Example
#include <sys.h>

void
main (int argc, char ** argv)
{

extern char ** _getargs(char *, char *);
HI-TECH C Z80 compiler 425

Library Functions

 10
extern int _argc_;

if(argc == 1) { /* no arguments */
argv = _getargs(0, "myname");
argc = _argc_;
}
.
.
.

}

Return Value
A pointer to an array of strings.

Note
Under CP/M the first element of the array returned by will not be the name of the program but will be
the name argument. This routine is not usable in a ROM based system.
426

 10
HI-TECH C Z80 compiler 427

Library Functions

 10
428

Index
Symbols

#pragma directives 150
$ location counter symbol 159
& character 168
. psect address symbol 181
.cmd files 190
.lib files 188, 189
.lnk files 53, 184
.obj files 181, 189
.sdb files 33
.sym files 180, 183
/ psect address symbol 181
?_xxxx type symbols 186
?a_xxxx type symbols 186
@ construct 118, 135
__Bxxxx type symbols 45
__Hxxxx type symbols 43
__Lxxxx type symbols 43
_GETARGS 425

A

ABORT 260
ABS 165, 261
absolute object files 181
absolute variables 51, 118
ACOS 262
addresses

link 176, 181
link addresses

load 40

load 176, 181
unresolved in listing file 34

alignment of data 117
argument passing 137
arithmetic overflow

assembler 156
Ascii table 92
ASCTIME 263
ASIN 265
assembler 33, 155

arithmetic overflow 156
character constants 158
command format 155
expressions 160
extended condition codes 163
identifies 159
jump optimization 156
labels 159

temporary 160
line numbers 157
listing 85
listing file 156, 157
local symbols 157
numeric constants 157
object file 156
opcode constants 158
operators 160
optimizer 33
register symbols 159
strings 160
undefined symbols 157

assembler code
inline 133
HI-TECH C Z80 compiler 429

assembler files 28
assembler listings 34
assembly language 157

character set 157
assembly language functions 132
ASSERT 266
ATAN 267
ATAN2 268
ATEXIT 269
ATOF 271
ATOI 272
ATOL 273
auto variables 143, 199
AUTOEXEC.BAT 17
autoexec.bat 197
autosave 77

B

BDOS 274
BDOSHL 275
begin block 72
binary files 135
Binary Output File 101
BIOS 276
bit fields 120
block

begin 72
command 71, 72
copy 74
delete 74
end 72
move 74

BSEARCH 277
bss psect 176

clearing 176

C

C source listings 29
example of 29

calculator 91
call graph 185
CALLOC 279
CEIL 280
CGETS 281
CHANGE_VECTOR 129, 370
character set 157
chicken sheds 159
CHMOD 282
CLASS 165
classes 179

address ranges 178
boundary argument 183
upper address limit 183

clipboard 71
clear 76, 79
editing 74
show 76, 79

clist utility 29
CLOSE 283
CLREOF 284
CLRERR 284
clutches 50
code generator 32
code keyword 121, 122
code pointers 123
code qualifier 152
colours 57

changing 58
valid 57

command
block 71, 72
clipboard 75
DOS 89
430

Index
keyboard 71
line 56
user defined 92

command line 95
long 95

command lines
HLINK, long command lines 184
long 190

comment 80
compile

& link 68, 83
to AS 84
to OBJ 83

compiled stack 185
compiler 95

options 94
overview 25

concatenation
macro arguments 168

COND 167
conditional assembly 167
CONFIG.SYS 17
console I/O functions 153
const keyword 120
const pointers 123
content region 70
copy 75

block 74
COS 285
COSH 286
CP/M memory model 102
cpp application 29
CPUTS 287
CREAT 288
creating

libraries 189
CREF 155, 192

command line arguments 192

options 193
-Fprefix 192
-Hheading 193
-Llen 193
-Ooutfile 193
-Pwidth 193
-Sstoplist 193
-Xprefix 193

cromwell application 36
cross reference

generating 192
list utility 192

cross reference generation 155
cross reference listings

excluding header symbols 192
excluding symbols 193
headers 193
output name 193
page length 193
page width 193

cross reference utility (CREF) 155
CTIME 290
cut 75

D

data psect 176
copying 176

data psects 192
data types

16 bit integer 117
32 bit integer 118
8 bit integer 117
char 117
floating point 118
int 117
long 118
short 117
HI-TECH C Z80 compiler 431

DB 167
debug information 33
debugger 90

Lucifer 197
setup 90

DEFB 167
DEFF 167
defined symbols

linker 149
DEFL 166
DEFS 167
delete

block 74
delta psect flag 179
dependency information 35
DI 291
DIV 292
DOS shell 89
download 89
DS 167
DUMP 34
DUP 293

E

editor keys 94
EI 291
ELSE 167
END 164
end block 72
ENDC 167
ENDM 168
enhanced symbol files 180
environment 17
environment variables

LUCZ80_ARGS 197
PATH 17
TEMP 15

EQU 166
error files

creating 179
error messages

LIBR 190
EVAL_POLY 295
EXECL 296
EXECV 296
EXIT 297
EXP 298
expressions

assembler expressions 160
extended condition codes 163
extern keyword 132

F

FABS 299
far keyword 121
FCLOSE 300
FDOPEN 301
FEOF 302
FERROR 302
FFLUSH 303
FGETC 304
FGETS 305
file

map 87
object list 88
open 56
output 81
output name 87
preprocessor assembler 85
project 87
source list 87, 88
symbol 88
text 56
432

Index
file formats 25
command 190
cross reference 192
DOS executable 181
enhanced symbol 180
library 188, 189
link 184
map 185
object 181, 189
symbol 180
symbolic debug 33
TOS executable 181

FILENO 306
fix 69
fixup 36
floating point

HI-TECH C 158
floating point format 118
FLOOR 308
fnconf directive 186
fnroot directive 186
FOPEN 309
format

Avocet 83
float 83
long 82

FPRINTF 311
FPUTC 313
FPUTS 314
FREAD 315
FREE 316
FREOPEN 317
FREXP 318
FSCANF 319
FSEEK 320
FTELL 322
function argument passing 137
function qualifier

interrupt 124

function return values 139
functions

return values 139
16 bit 139
32 bit 140
8 bit 139
structures 140

FWRITE 323

G

generate
assembler listing 85

generated identifiers
assembler 159

GETC 324
GETCH 325
GETCHAR 326
GETCHE 325
GETENV 327
GETS 329
getting started 18
GETUID 330
GETW 331
GLOBAL 164, 165
global optimization 33
GLOBAL pseudo-op 132
global symbols 176
GMTIME 332

H

hardware initialization 146
hardware requirements 56
header files 26
heap 143
help topics 93
HI-TECH C Z80 compiler 433

hex files 135
multiple 179

HI-TECH C floating point 158
HLINK

modifying options 52
-Pspec 43

HLINK options 177
-Aclass=low-high 46, 178
-Cpsect=class 179
-Dsymfile 179
-Eerrfile 179
-F 179
-Gspec 179
-H+symfile 180
-Hsymfile 180
-Jerrcount 180
-K 180
-L 181
-LM 181
-Mmapfile 181
-N 181
-Ns 181
-Ooutfile 181
-Pspec 181
-Qprocessor 183
-Sclass=limit[,bound] 183
-Usymbol 183
-Vavmap 183
-Wnum 184
-X 184
-Z 184

HLINK options -Nc 181
HPDZ 20

editor 69
screen size 56
starting 55

HPDZ.INI 56

I

I/O
console I/O functions 153
serial 153
STDIO 153

I/O registers 94
identifier length 85
IF 167
IM 334
indent 80
ini file 25
inline assembler code 133
INSTALL program 15, 16
installation 15, 16

custom 16
directories 16
key 16

installation key 16
instruction set 94
Intel hex 135
interrupt keyword 124
interrupts 124

<intrpt.h> 124
CHANGE_VECTOR 124, 126
di() 124
disable 124
ei() 124
enable 124
handling in C 124
im() 125
initialising an interrupt vector 125
interrupt functions 124
mode 0 127
mode 1 127
mode 2 127
RAM_VECTOR 124
READ_RAM_VECTOR 124, 126
434

Index
ROM_VECTOR 124
set_vector 124
set_vector() 125
setting the interrupt mode 125

IRP 170
IRPC 170
ISALNUM 335
ISALPHA 335
ISATTY 337
ISDIGIT 335
ISLOWER 335

J

Japanese character handling 151
JIS character handling 151
jump optimization 156

K

KBHIT 338
keyword

code 121, 122
const 120
far 121
interrupt 124
near 121
persistent 121, 122
volatile 120

L

labels 159
temporary 160

large memory model 101
LDEXP 339
LDIV 340
length of identifiers 85

LIBR 188
command line arguments 188
error messages 190
listing format 190
long command lines 190
module order 190

librarian 188
command files 190
command line arguments 188, 189
error messages 190
listing format 190
long command lines 190
module order 190

libraries
adding files to 189
C reference 93
CP/M model 102
creating 189
default 96
deleting files from 189
file list 88
format of 188
large model 101
linking 183
listing modules in 189
module order 190
small model 101
used in executable 181

library
difference between object file 188
manager 188
prefixes 106

Library functions
_GETARGS 425
ABORT 260
ABS 261
ACOS 262
ASCTIME 263
HI-TECH C Z80 compiler 435

ASIN 265
ASSERT 266
ATAN 267
ATAN2 268
ATEXIT 269
ATOF 271
ATOI 272
ATOL 273
BDOS 274
BDOSHL 275
BIOS 276
BSEARCH 277
CALLOC 279
CEIL 280
CGETS 281
CHANGE_VECTOR 370
CHMOD 282
CLOSE 283
CLREOF 284
CLRERR 284
COS 285
COSH 286
CPUTS 287
CREAT 288
CTIME 290
DI 291
DIV 292
DUP 293
EI 291
EVAL_POLY 295
EXECL 296
EXECV 296
EXIT 297
EXP 298
FABS 299
FCLOSE 300
FDOPEN 301
FEOF 302

FERROR 302
FFLUSH 303
FGETC 304
FGETS 305
FILENO 306
FLOOR 308
FOPEN 309
FPRINTF 311
FPUTC 313
FPUTS 314
FREAD 315
FREE 316
FREOPEN 317
FREXP 318
FSCANF 319
FSEEK 320
FTELL 322
FWRITE 323
GETC 324
GETCH 325
GETCHAR 326
GETCHE 325
GETENV 327
GETS 329
GETUID 330
GETW 331
GMTIME 332
IM 334
ISALNUM 335
ISALPHA 335
ISATTY 337
ISDIGIT 335
ISLOWER 335
KBHIT 338
LDEXP 339
LDIV 340
LOCALTIME 341
LOG 343
436

Index
LOG10 343
LONGJMP 344
LSEEK 346
MALLOC 347
MEMCHR 348
MEMCMP 349
MEMCPY 351
MEMMOVE 352
MEMSET 353
MODF 354
OPEN 355
PERROR 357
PERSIST_CHECK 358
PERSIST_VALIDATE 358
POW 359
PRINTF 360
PUTC 363
PUTCH 364
PUTCHAR 365
PUTS 366
PUTW 367
QSORT 368
RAM_VECTOR 370
RAND 371
READ 372
READ_RAM_VECTOR 370
REALLOC 373
REMOVE 374
RENAME 375
REWIND 376
ROM_VECTOR 377
SBRK 378
SCANF 379
SET_VECTOR 386
SETBUF 384
SETJMP 381
SETUID 383
SETVBUF 384

SIGNAL 388
SIN 390
SINH 286
SPRINTF 391
SQRT 392
SRAND 393
SSCANF 394
STAT 395
STRCAT 397
STRCHR 398
STRCMP 399
STRCPY 400
STRCSPN 401
STRDUP 402
STRICHR 398
STRICMP 399
STRISTR 410
STRLEN 403
STRNCAT 404
STRNCMP 405
STRNCPY 406
STRNICMP 405
STRPBRK 407
STRRCHR 408
STRRICHR 408
STRSPN 409
STRSTR 410
STRTOK 411
TAN 412
TANH 286
TIME 413
TMPFILE 414
TMPNAM 415
TOASCII 416
TOLOWER 416
TOUPPER 416
UNGETC 417
UNGETCH 419
HI-TECH C Z80 compiler 437

UNLINK 420
VA_ARG 421
VA_END 421
VA_START 421
VFPRINTF 311
VFSCANF 319
VPRINTF 360
VSCANF 379
VSPRINTF 391
VSSCANF 394
WRITE 423
XTOI 424

line numbers
from assembler code 157

link addresses 40, 135, 176, 181
linker 35, 37, 89, 175

command files 184
command line arguments 184
invoking 184
long command lines 184
modifying options 52
passes 188
symbols handled 176

linker defined symbols 149
linker errors

aborting 180
undefined symbols 181

linker options 42, 177
-Aclass=low-high 46, 178, 182
-Cpsect=class 179
-Dsymfile 179
-Eerrfile 179
-F 179
-Gspec 179
-H+symfile 180
-Hsymfile 180
-I 181
-Jerrcount 180

-K 180
-L 181
-LM 181
-Mmapfile 181
-N 181
-Nc 181
-Ns 181
numbers in 178
-Ooutfile 181
-P 43
-Pspec 181
-Qprocessor 183
-Sclass=limit[, bound] 183
-Usymbol 183
-Vavmap 183
-Wnum 184
-X 184
-Z 184

list files
assembler 34
C source 29

listfile
assembler 100

listing file
assembler 156

page length 157
page width 157

C source code 103
little endian 117
load addresses 40, 176, 181
LOCAL 165, 169
local psects 176
local symbols

suppressing 157, 184
local variables 143

auto 143
static 143

LOCALTIME 341
438

Index
location counter 159
LOG 343
LOG10 343
long command lines 95
LONGJMP 344
LSEEK 346
Lucifer

command set 199
defaults 197
displaying arrays 205
LUCZ80_ARGS environment variable

197
modifying target code 207
target code 207

Lucifer command
- 206
! 206
. 205
/ 206
; 206
= 206
@ 204
B 199
C 199
D 200
E 201
G 201
I 201
L 202
M 202
P 202
Q 202
R 202
S 203
T 203
U 203
W 204
X 204

Lucifer options
-B 198
-P 197
-S 197
unix 197

Lucifer source level debugger (LUCZ80) 197
LUCZ80 Lucifer source level debugger 197

M
MACRO 168
macro

& character 168
invoking 172

make 86
MALLOC 347
map files 181

call graphs 185
example of 185
processor selection 183
segments 185
symbol tables in 181
width of 184

MEMCHR 348
MEMCMP 349
MEMCPY 351
MEMMOVE 352
memory

configuration 67
map 91
model 80

CP/M 102
CP/M library 106
large 101
large library 106
small 101
small library 106

specifying ranges 178
unused 181
HI-TECH C Z80 compiler 439

memory model 96
memory models

predefined symbols 116
MEMSET 353
menu

compile 68
edit 78
file 77
help 93
hot keys 60, 450
mouse operation 59
pull down 59
run 89
setup 63, 76

MODF 354
modifying 207
modules

in library 188
list format 190
order in library 190
used in executable 181

mouse
driver 57
sensitivity 63

move
block 74

multiple hex files 179

N

near keyword 121
NMI 128
non-volatile RAM 82, 99
numbers

in linker options 178

O

object code, version number 181
object file

specifying 156
object files 33

absolute 33, 181
displaying 34
relocatable 33, 175
symbol only 179

OBJTOHEX 36, 191
command line arguments 191
table of options 191

objtohex 89
OPEN 355
operators

assembler operators 160
optimization

assembler 33
for speed 108
global 113
HPDZ menu 85
jump optimization 156
peephole 33, 108

ORG 166
outdent 80
output file formats 36, 181

specifying 191
table of 36

overlaid memory areas 180
OVRLD 165

P
p1 application 30
PACKING.LST 15
parameters 199
parser 30

output 31
440

Index
paste 75
PATH environment variable 17
paths

CPP include 89
peephole optimization 33
PERROR 357
PERSIST_CHECK 358
PERSIST_VALIDATE 358
persistent keyword 121, 122
persistent variables 82, 99, 145
pick list 78
pointers

code 123
to code 123
to const 123

POW 359
powerup routine 146
pragma directives 150
predefined symbols

memory models 116
preprocessor 116

preprocessing 29
preprocessor

output 29
preprocessor symbols

predefined 116
PRINTF 360
printf

float and long support 106
long support 106
standard support 106

printf format checking 151
processor selection 183
program section 162
project 85

new 87
rename 87
save 87

PSECT 165
psect 162

ABS flag 165
bss 176
CLASS flag 165
compiler generated psects 144
data 176, 192
GLOBAL flag 165
LOCAL flag 165
OVRLD flag 165
PURE flag 165
RELOC flag 166
SIZE flag 166

psect flags 183
psect pragma directive 52
psects 33, 37, 175

basic kinds 175
class 46, 178, 179, 183
delta value of 179
grouping 41
linking 40, 175
local 176
overlaid 41
positioning 41
relocation 36
renaming 151
specifying address ranges 46, 182
specifying addresses 43, 178, 181
types of 39
user defined 48

pseudo-ops 163
GLOBAL 132
SIGNAT 132, 134

PURE 165
PUTC 363
PUTCH 364
PUTCHAR 365
PUTS 366
HI-TECH C Z80 compiler 441

PUTW 367

Q

QSORT 368
qualifiers

code 152
string 152

quitting HPDZ 77

R

RAM 135
address 67, 81
non-volatile 82, 99

RAM_VECTOR 129, 370
RAND 371
READ 372
READ_RAM_VECTOR 129, 370
REALLOC 373
reboot

after installation 17
register names 159
register symbols 159
register usage 135
registers

I/O 94
release notes 94
re-link 87
RELOC 166, 179, 181
relocatable

object files 175
relocation 36, 175
relocation information

preserving 181
re-make 87
REMOVE 374
RENAME 375

renaming psects 151
repeat, in assembler code 170
replace 79
REPT 170
RETI 124
REWIND 376
ROM 135

address 67, 81
ROM_VECTOR 129, 377
run-time startoff 96, 145

S

S1 format 135
save 77
save as 77
SBRK 378
SCANF 379
screen

frame 70
resolution 56
windows 56

search 71, 79
string 91

segment selector 179
segments 51, 179, 185
selecting text 75
serial I/O 153
serial number 16
SET_VECTOR 125, 386
set_vector 128
SETBUF 384
SETJMP 381
SETUID 383
SETVBUF 384
SIGNAL 388
SIGNAT pseudo-op 132, 134
signature checking 134
442

Index
SIN 390
SINH 286
SIZE 166
size error

suppressing 157
small memory model 101
sound 63
source modules 29
SPRINTF 391
SQRT 392
SRAND 393
SSCANF 394
stack 143
startup module

clearing bss 176
data copying 176

STAT 395
static variables 143
status line 70
STDIO 153
STRCAT 397
STRCHR 398
STRCMP 399
STRCPY 400
STRCSPN 401
STRDUP 402
STRICHR 398
STRICMP 399
string qualifiers 152
strings 160
STRISTR 410
STRLEN 403
STRNCAT 404
STRNCMP 405
STRNCPY 406
STRNICMP 405
STRPBRK 407
STRRCHR 408

STRRICHR 408
STRSPN 409
STRSTR 410
STRTOK 411
structure padding 117
structures 120

bit fields in ... 120
switch

code generation 153
direct 153
simple 153

symbol files
enhanced 180
generating 180
local symbols in 184
old style 179
removing symbols from 183

Symbol tables 100
Avocet format 100
for AVSIM 100

symbol tables 105, 106, 116, 181, 183
assembler level 106
Avocet format 116
for AVSIM 100, 106, 116
for Lucifer 105, 116
sorting 181
source level 105

symbols
global 176, 189
pre-defined 88
undefined 183

T

tab 79
TAN 412
TANH 286
target code 207
HI-TECH C Z80 compiler 443

technical support 94, 109
temp directory 15
temp path 26
temporary labels 160
TIME 413
time 63
TMPFILE 414
TMPNAM 415
TOASCII 416
TOLOWER 416
TOUPPER 416
TSR programs 89
type modifiers

code 122
const 120
persistent 122
volatile 120, 122

type qualifiers
and auto variables 143
code 121
far 121
near 121
persistent 121

U

uncomment 80
undefined symbols

assembler 157
UNGETC 417
UNGETCH 419
unions 120
UNLINK 420
utilities 175

V

VA_ARG 421

VA_END 421
VA_START 421
variables

absolute 51, 118
auto 143
local 143
persistent 82, 99
static 143

VFPRINTF 311
VFSCANF 319
volatile keyword 120, 122
VPRINTF 360
VSCANF 379
VSPRINTF 391
VSSCANF 394

W

warning
level 84
stop on 84

warning level
setting 184

warnings
suppressing 184

window
edit 69, 70
error 68
move 62
resize 62
select 60

WRITE 423

X

XTOI 424
444

Index
Z

ZAS
assembler controls 172
generated identifiers 159

ZAS controls
EJECT 173
HEADING 173
INCLUDE 173
LIST 156, 173
TITLE 173

ZAS directives 163
COND 167
DB 167
DEFB 167
DEFF 167
DEFL 166
DEFS 167
DS 167
ELSE 167
END 164
ENDC 167
ENDM 168
EQU 166
GLOBAL 164
IF 167
IRP 170
IRPC 170
LOCAL 169
MACRO 168
NUL 169
ORG 166
PSECT 165
PSECT flag

ABS 165
CLASS 165
GLOBAL 165
LOCAL 165

OVRLD 165
PURE 165
RELOC 166
SIZE 166

REPT 170
SIGNAT 172

ZAS options 155
-C 155
-E 155
-I 156
-J 156
-L 156
-N 156
-O 156
-P 157
-S 157
-U 157
-V 157
-W 157
-X 157

ZC 21
ZC command line compiler driver 95
ZC options

-180 96
-64180 96
-A 96, 135
-AAHEX 100
-ALTREG 100
-ASMLIST 100
-AV 100, 105, 106
-AVSIM 100
-Bc 102
-BIN 101, 135
-Bl 101
-Bs 101
-C 102, 135
-CLIST 103
-CPM 103
HI-TECH C Z80 compiler 445

-CR 103
-D 103
-E 104
-G 105, 116, 197
-H 100, 106, 116, 197
-HELP 106
-I 106
-L 106, 107, 152
-LF 106
-M 107
-MOTOROLA 107
-N 108
-O 108, 115, 135
-OF 108
-OMF51 108
-P 108
-PRE 109
-PROTO 109
-PSECTMAP 110, 135
-q 111
-ROM 111
-ROMDATA 123
-S 111, 134, 135
-STRICT 112
-TEK 112
-U 112
-UBROF 112
-UNSIGNED 112, 117
-V 112
-W 113
-X 113
-Zg 113

ZC output formats
American Automation Hex 100, 115
Binary 101, 115
Intel Hex 115
Motorola Hex 107, 115
Tektronix Hex 112, 115

UBROF 112, 115
446

 4

 3

 2

 5

 6

 7

 8

 1

 9

 10

Introduction

Tutorials

Features and Runtime Environment

The Z80 Macro Assembler

Linker and Utilities Reference Manual

Lucifer Source Level Debugger

Error Messages

Library Functions

Using HPDZ

ZC Command Line Compiler Driver

ZC Command Line Options

-180 Generate code for the Z180 processor
-64180 Generate code for the 64180 processor
-Aspec Specify memory addresses for linking
-AAHEX Generate an American Automation symbolic HEX file
-ALTREG Use alternate register set
-ASMLIST Generate assembler .LST file for each compilation
-AV Select AVOCET format symbol table
-AVSIM Same as -AV
-BIN Generate a Binary output file
-Bs Select small memory model
-Bl Select large memory model
-Bc Select CP/M memory model
-C Compile to object files only
-CLIST Generate C source listing file
-CPM Generate CP/M executable file
-CRfile Generate cross-reference listing
-Dmacro Define pre-processor macro
-E Use “editor” format for compiler errors
-Efile Redirect compiler errors to a file
-E+file Append errors to a file
-Gfile Generate source level symbol table
-Hfile Generate symbol table without line numbers etc.
-HELP Print summary of options
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-MOTOROLA Generate a Motorola S1/S9 HEX format output file
-Nlength Set identifier length to length (default is 31 characters)
-O Enable peephole optimization
-Ofile Specify output filename
-OF Optimise for speed
-OMF51 Produce an OMF-51 output file
-P Preprocess assembler files
-P8 Use 8 bit port addressing
-P16 Use 16 bit port addressing
-PROTO Generate function prototype information
-PSECTMAP Display complete memory segment usage after linking
-q Specify quiet mode
-ROMDATA Leave initialised data in ROM
-ROMranges Specify ROM ranges for code
-S Compile to assembler source files only
-SA Compile to Avocet AVMAC assembler source files
-STRICT Enable strict ANSI keyword conformance
-TEK Generate a Tektronix HEX format output file
-UBROF Generate an UBROF format output file
-UNSIGNED Make default character type unsigned
-Usymbol Undefine a predefined pre-processor symbol
-V Verbose: display compiler pass command lines
-Wlevel Set compiler warning level
-X Eliminate local symbols from symbol table
-Z180 Generate code for the Z180 processor
-Zg Enable global optimization in the code generator

HPDZ80 menu hot keys

Alt-O Open editor file
Alt-N Clear editor file
Alt-S Save editor file
Alt-A Save editor file with new name
Alt-Q Quit to DOS
Alt-J DOS Shell
Alt-F Open File menu
Alt-E Open Edit menu
Alt-I Open Compile menu
Alt-M Open Make menu
Alt-R Open Run menu
Alt-T Open Options menu
Alt-U Open Utility menu
Alt-H Open Help menu
Alt-P Open Project file
Alt-W Warning level dialog
Alt-Z Optimization menu
Alt-D Command.com
F3 Compile and link single file
Shift-F3 Compile to object file
Ctrl-F3 Compile to assembler code
Ctrl-F4 Retrieve last file
F5 Make target program
Shift-F5 Re-link target program
Ctrl-F5 Re-make all objects and target program
Alt-P Load project file
Shift-F7 User defined command 1
Shift-F8 User defined command 2
Shift-F9 User defined command 3
Shift-F10 User defined command 4
F2 Search in edit window
Alt-X Cut to clipboard
Alt-C Copy to clipboard
Alt-V Paste from clipboard

	Introduction
	1.1 Typographic conventions
	1.2 The HI-TECH C Z80 cross compiler
	1.3 Installation
	1.3.1 MS-DOS
	1.3.2 INSTALL program
	1.3.2.1 Installation steps
	1.3.2.2 Custom installation
	1.3.2.3 Serial number and installation key

	1.3.3 Accessing the compiler

	1.4 Unix Installation
	1.4.1 Accessing the compiler under Unix

	1.5 Getting started
	1.6 A Sample Program
	1.6.1 Memory Map

	1.7 Using HPDZ
	1.8 Using ZC
	1.8.1 Output File Format Selection

	1.9 Running your program

	Tutorials
	2.1 Overview of the compilation process
	2.1.1 Compilation
	2.1.2 The compiler input
	2.1.2.1 Steps before linking
	2.1.2.2 The link stage

	2.2 Psects and the linker
	2.2.1 Psects
	2.2.1.1 The psect directive
	2.2.1.2 Psect types

	2.3 Linking the psects
	2.3.1 Grouping psects
	2.3.2 Positioning psects
	2.3.3 Linker options to position psects
	2.3.3.1 Placing psects at an address
	2.3.3.2 Exceptional cases
	2.3.3.3 Psect classes
	2.3.3.4 User-defined psects

	2.3.4 Issues when linking
	2.3.4.1 Paged memory
	2.3.4.2 Separate memory areas
	2.3.4.3 Objects at absolute addresses

	2.3.5 Modifying the linker options

	Using HPDZ
	3.1 Introduction
	3.1.1 Starting HPDZ

	3.2 The HI-TECH Windows user interface
	3.2.1 Hardware requirements
	3.2.2 Colours
	3.2.3 Pull-down menus
	3.2.3.1 Keyboard menu selection
	3.2.3.2 Mouse menu selection
	3.2.3.3 Menu hot keys

	3.2.4 Selecting windows
	3.2.5 Moving and resizing windows
	3.2.6 Buttons
	3.2.7 The Setup menu

	3.3 Tutorial: Creating and compiling a C program
	3.4 The HPDZ editor
	3.4.1 Frame
	3.4.2 Content region
	3.4.3 Status line
	3.4.4 Keyboard commands
	3.4.5 Block commands
	3.4.6 Clipboard editing
	3.4.6.1 Selecting Text
	3.4.6.2 Clipboard commands

	3.5 HPDZ menus
	3.5.1 <<>> menu
	3.5.2 File menu
	3.5.3 Edit menu
	3.5.4 Options menu
	3.5.5 Compile menu
	3.5.6 Make menu
	3.5.7 Run menu
	3.5.8 Utility menu
	3.5.9 Help menu

	ZC Command Line Compiler Driver
	4.0.1 Long command lines
	4.0.2 Default Libraries
	4.0.3 Standard Run-Time Startoff
	4.1 ZC Compiler Options
	4.1.1 -180: Generate Z180/64180 Code
	4.1.2 -64180: Generate Z180/64180 Code
	4.1.3 -Aspec: Set ROM and RAM Addresses
	4.1.4 -AAHEX: Generate American Automation Symbolic Hex
	4.1.5 -ALTREG: Use Alternate Register Set
	4.1.6 -ASMLIST: Generate Assembler .LST Files
	4.1.7 -AV: Select Avocet Symbol File
	4.1.8 -AVSIM: Select Avocet Symbol File
	4.1.9 -BIN: Generate Binary Output File
	4.1.10 -Bs: Select Small Memory Model
	4.1.11 -Bl: Select Large Memory Model
	4.1.12 -Bc: Select CP/M Memory Model
	4.1.13 -C: Compile to Object File
	4.1.14 -CLIST: Produce C Listing File
	4.1.15 -CPM: Generate CP/M Executable File
	4.1.16 -CRfile: Generate Cross Reference Listing
	4.1.17 -Dmacro: Define Macro
	4.1.18 -E: Use “editor” Format for Compiler Errors
	4.1.19 -Efile: Redirect Compiler Errors to a File
	4.1.20 -Gfile: Generate Source Level Symbol File
	4.1.21 -Hfile: Generate Assembler Level Symbol File
	4.1.22 -HELP: Display Help
	4.1.23 -Ipath: Include Search Path
	4.1.24 -Llibrary: Scan Library
	4.1.25 -L-option: Specify Extra Linker Option
	4.1.26 -Mfile: Generate Map File
	4.1.27 -MOTOROLA: Generate Motorola S-Record HEX File
	4.1.28 -Nlength: Specify Identifier Significant Length
	4.1.29 -O: Invoke Optimizer
	4.1.30 -Ofile: Specify Output File
	4.1.31 -OF: Optimize for Speed
	4.1.32 -OMF51: Produce OMF-51 Output File
	4.1.33 -P: Pre-process Assembly Files
	4.1.34 -P8: Use 8 bit port addressing
	4.1.35 -P16: Use 16 bit port addressing
	4.1.36 -PRE: Produce Pre-processed Source Code
	4.1.37 -PROTO: Generate Prototypes
	4.1.38 -PSECTMAP: Display Complete Memory Usage
	4.1.39 -q: Quiet Mode
	4.1.40 -ROMDATA
	4.1.41 -ROMranges
	4.1.42 -S: Compile to Assembler Code
	4.1.43 -SA: Compile to Avocet assembler source files
	4.1.44 -STRICT: Strict ANSI Conformance
	4.1.45 -TEK: Generate Tektronix HEX File
	4.1.46 -Umacro: Undefine a Macro
	4.1.47 -UBROF: Generate UBROF Format Output File
	4.1.48 -UNSIGNED: Make char Type Unsigned
	4.1.49 -V: Verbose Compile
	4.1.50 -Wlevel: Set Warning Level
	4.1.51 -X: Strip Local Symbols
	4.1.52 -Z180: Generate Z180 Code
	4.1.53 -Zg: Global Optimization

	Features and Runtime Environment
	5.1 Output File Formats
	5.2 Symbol Files
	5.2.1 Avocet Symbol Tables

	5.3 Predefined Macros
	5.4 Supported Data Types
	5.4.1 8 Bit Integer Data Types
	5.4.2 16 Bit Integer Data Types
	5.4.3 32 Bit Integer Data Types
	5.4.4 Floating Point

	5.5 Absolute Variables
	5.6 Port Type Qualifier
	5.7 Structures and Unions
	5.7.1 Bit Fields in Structures

	5.8 Const and Volatile Type Qualifiers
	5.9 Special Type Qualifiers
	5.9.1 Persistent Type Qualifier
	5.9.2 Code Type Qualifier

	5.10 Pointers
	5.10.1 Combining Type Qualifiers and Pointers
	5.10.2 Code Pointers
	5.10.3 Const Pointers

	5.11 Interrupt Handling in C
	5.11.1 Interrupt Handling Macros
	5.11.1.1 The ei() and di() Macros
	5.11.1.2 The im() Macro
	5.11.1.3 The set_vector() Function
	5.11.1.4 ROM_VECTOR
	5.11.1.5 RAM_VECTOR
	5.11.1.6 CHANGE_VECTOR
	5.11.1.7 READ_RAM_VECTOR

	5.11.2 Interrupt Modes
	5.11.2.1 Setting the Interrupt Mode
	5.11.2.2 Interrupt Mode 0 and Mode 1
	5.11.2.3 Interrupt Mode 2

	5.11.3 Predefined Interrupt Vector Names
	5.11.4 Handling Non Maskable Interrupts
	5.11.5 Fast Interrupts

	5.12 Mixing C and Z80 Assembler Code
	5.12.1 External Assembly Language Functions
	5.12.2 #asm, #endasm and asm()

	5.13 Signature Checking
	5.14 Linking Programs
	5.15 Memory Usage
	5.16 Register Usage
	5.17 Stack Frame Organisation
	5.18 Function Argument Passing
	5.19 Function Return Values
	5.19.1 8 Bit Return Values
	5.19.2 16 Bit Return Values
	5.19.3 32 Bit Return Values
	5.19.4 Structure Return Values

	5.20 Function Calling Conventions for Large Model
	5.20.1 Near and Basenear Functions in Large Model

	5.21 Stack and Heap Allocation
	5.22 Local Variables
	5.22.1 Auto Variables
	5.22.2 Static Variables

	5.23 Compiler Generated Psects
	5.24 Runtime Startoff Modules
	5.24.1 The powerup routine
	5.24.2 Using Linker Defined Symbols
	5.24.2.1 Clearing the bss Psect
	5.24.2.2 Copying the data Psect
	5.24.2.3 Initialising the Stack

	5.24.3 Customizing the Runtime Startoff Code
	5.24.3.1 Copyright Message
	5.24.3.2 Using the New Runtime Startoff Code

	5.25 Optimizing Code for the Z80
	5.26 Pragma Directives
	5.26.1 The #pragma jis and nojis Directives
	5.26.2 The #pragma printf_check Directive
	5.26.3 The #pragma psect Directive
	5.26.4 The #pragma strings Directive
	5.26.5 The #pragma switch Directive

	5.27 Standard I/O Functions and Serial I/O

	The Z80 Macro Assembler
	6.1 Assembler usage
	6.2 Assembler options
	6.3 Z80 Assembly language
	6.3.1 Character set
	6.3.2 Constants
	6.3.2.1 Numeric Constants
	6.3.2.2 Character Constants
	6.3.2.3 Opcode Constants

	6.3.3 Delimiters
	6.3.4 Special characters
	6.3.5 Identifiers
	6.3.5.1 Significance of Identifiers
	6.3.5.2 Assembler Generated Identifiers
	6.3.5.3 Location Counter
	6.3.5.4 Register symbols
	6.3.5.5 Labels
	6.3.5.6 Temporary labels

	6.3.6 Strings
	6.3.7 Expressions
	6.3.8 Statement format
	6.3.9 Program sections
	6.3.10 Extended Condition Codes
	6.3.11 Assembler directives
	6.3.11.1 GLOBAL
	6.3.11.2 END
	6.3.11.3 PSECT
	6.3.11.4 ORG
	6.3.11.5 EQU
	6.3.11.6 DEFL
	6.3.11.7 DEFB, DB
	6.3.11.8 DEFW
	6.3.11.9 DEFF
	6.3.11.10 DEFS, DS
	6.3.11.11 IF, COND, ELSE and ENDC
	6.3.11.12 MACRO and ENDM
	6.3.11.13 LOCAL
	6.3.11.14 REPT
	6.3.11.15 IRP and IRPC
	6.3.11.16 SIGNAT

	6.3.12 Macro invocations
	6.3.13 Assembler controls
	6.3.13.1 *EJECT
	6.3.13.2 *HEADING string
	6.3.13.3 *INCLUDE file
	6.3.13.4 *LIST on|off
	6.3.13.5 *TITLE string

	Linker and Utilities Reference Manual
	7.1 Introduction
	7.2 Relocation and Psects
	7.3 Program Sections
	7.4 Local Psects
	7.5 Global Symbols
	7.6 Link and load addresses
	7.7 Operation
	7.7.1 Numbers in linker options
	7.7.2 -Aclass=low-high,...
	7.7.3 -Cx
	7.7.4 -Cpsect=class
	7.7.5 -Dclass=delta
	7.7.6 -Dsymfile
	7.7.7 -Eerrfile
	7.7.8 -F
	7.7.9 -Gspec
	7.7.10 -Hsymfile
	7.7.11 -H+symfile
	7.7.12 -Jerrcount
	7.7.13 -K
	7.7.14 -I
	7.7.15 -L
	7.7.16 -LM
	7.7.17 -Mmapfile
	7.7.18 -N, -Ns and-Nc
	7.7.19 -Ooutfile
	7.7.20 -Pspec
	7.7.21 -Qprocessor
	7.7.22 -S
	7.7.23 -Sclass=limit[, bound]
	7.7.24 -Usymbol
	7.7.25 -Vavmap
	7.7.26 -Wnum
	7.7.27 -X
	7.7.28 -Z

	7.8 Invoking the Linker
	7.9 Map Files
	7.9.1 Call Graph Information

	7.10 Librarian
	7.10.1 The Library Format
	7.10.2 Using the Librarian
	7.10.3 Examples
	7.10.4 Supplying Arguments
	7.10.5 Listing Format
	7.10.6 Ordering of Libraries
	7.10.7 Error Messages

	7.11 Objtohex
	7.11.1 Checksum Specifications

	7.12 Cref
	7.12.1 -Fprefix
	7.12.2 -Hheading
	7.12.3 -Llen
	7.12.4 -Ooutfile
	7.12.5 -Pwidth
	7.12.6 -Sstoplist
	7.12.7 -Xprefix

	7.13 Memmap
	7.13.1 Using MEMMAP
	7.13.1.1 -P
	7.13.1.2 -Wwid

	Lucifer Source Level Debugger
	8.1 Using Lucifer
	8.2 Symbol names in expressions
	8.2.1 Auto Variables and Parameters

	8.3 Lucifer command set
	8.3.1 The B command: set or display breakpoints
	8.3.2 The C command: display instruction at PC
	8.3.3 The D command: display memory contents
	8.3.4 The E command: examine C source code
	8.3.5 The G command: commence execution
	8.3.6 The I command: toggle instruction trace mode
	8.3.7 The L command: load a hex file
	8.3.8 The M command: modify memory
	8.3.9 The P command: toggle input prompting mode
	8.3.10 The Q command: exit to operating system
	8.3.11 The R command: remove breakpoints
	8.3.12 The S command: step one line
	8.3.13 The T command: trace one instruction
	8.3.14 The U command: disassemble machine instructions
	8.3.15 The W command: upload binary
	8.3.16 The X command: examine or change registers
	8.3.17 The @ command: display C variables
	8.3.18 The . command: set a breakpoint and go
	8.3.19 The ; command: display from a source line
	8.3.20 The = command: display next page of source
	8.3.21 The - command: display previous page of source
	8.3.22 The / command: search source file for a string
	8.3.23 The ! command: execute a DOS command
	8.3.24 Other commands

	8.4 User input and output with Lucifer
	8.5 Installing Lucifer on a target
	8.5.1 Modifying the target code

	Error Messages
	 .’ expected after ’..’ (Parser)
	 case’ not in switch (Parser)
	 default’ not in switch (Parser)
	(expected (Parser)
) expected (Parser)
	*: no match (Preprocessor, Parser)
	, expected (Parser)
	-s, too few values specified in * (Preprocessor)
	-s, too many values, * unused (Preprocessor)
	... illegal in non-prototype arg list (Parser)
	: expected (Parser)
	; expected (Parser)
	= expected (Code Generator, Assembler)
	#define syntax error (Preprocessor)
	#elif may not follow #else (Preprocessor)
	#elif must be in an #if (Preprocessor)
	#else may not follow #else (Preprocessor)
	#else must be in an #if (Preprocessor)
	#endif must be in an #if (Preprocessor)
	#error: * (Preprocessor)
	#if ... sizeof() syntax error (Preprocessor)
	#if ... sizeof: bug, unknown type code * (Preprocessor)
	#if ... sizeof: illegal type combination (Preprocessor)
	#if bug, operand = * (Preprocessor)
	#if sizeof() error, no type specified (Preprocessor)
	#if sizeof, unknown type * (Preprocessor)
	#if value stack overflow (Preprocessor)
	#if, #ifdef, or #ifndef without an argument (Preprocessor)
	#include syntax error (Preprocessor)
	#included file * was converted to lower case (Preprocessor)
] expected (Parser)
	{ expected (Parser)
	} expected (Parser)
	a parameter may not be a function (Parser)
	absolute expression required (Assembler)
	add_reloc - bad size (Assembler)
	ambiguous format name ’*’ (Cromwell)
	argument * conflicts with prototype (Parser)
	argument -w* ignored (Linker)
	argument list conflicts with prototype (Parser)
	argument redeclared: * (Parser)
	argument too long (Preprocessor, Parser)
	arithmetic overflow in constant expression (Code Generator)
	array dimension on * ignored (Preprocessor)
	array dimension redeclared (Parser)
	array index out of bounds (Parser)
	assertion (Code Generator)
	assertion failed: * (Linker)
	attempt to modify const object (Parser)
	auto variable * should not be qualified (Parser)
	bad #if ... defined() syntax (Preprocessor)
	bad ’-p’ format (Linker)
	bad -a spec: * (Linker)
	bad -m option: * (Code Generator)
	bad -q option * (Parser)
	bad arg * to tysize (Parser)
	bad arg to im (Assembler)
	bad bconfloat - * (Code Generator)
	bad bit number (Assembler, Optimiser)
	bad bitfield type (Parser)
	bad character const (Parser, Assembler, Optimiser)
	bad character in extended tekhex line * (Objtohex)
	bad checksum specification (Linker)
	bad combination of flags (Objtohex)
	bad complex range check (Linker)
	bad complex relocation (Linker)
	bad confloat - * (Code Generator)
	bad conval - * (Code Generator)
	bad dimensions (Code Generator)
	bad dp/nargs in openpar: c = * (Preprocessor)
	bad element count expr (Code Generator)
	bad gn (Code Generator)
	bad high address in -a spec (Linker)
	bad int. code (Code Generator)
	bad load address in -a spec (Linker)
	bad low address in -a spec (Linker)
	bad min (+) format in spec (Linker)
	bad mod ’+’ for how = * (Code Generator)
	bad non-zero node in call graph (Linker)
	bad object code format (Linker)
	bad op * to revlog (Code Generator)
	bad op * to swaplog (Code Generator)
	bad op: "*" (Code Generator)
	bad operand (Optimiser)
	bad origin format in spec (Linker)
	bad overrun address in -a spec (Linker)
	bad pragma * (Code Generator)
	bad record type * (Linker)
	bad relocation type (Assembler)
	bad repeat count in -a spec (Linker)
	bad ret_mask (Code Generator)
	bad segment fixups (Objtohex)
	bad segspec * (Linker)
	bad size in -s option (Linker)
	bad size in index_type (Parser)
	bad size list (Parser)
	bad storage class (Code Generator)
	bad string * in psect pragma (Code Generator)
	bad sx (Code Generator)
	bad u usage (Code Generator)
	bad variable syntax (Code Generator)
	bad which * after i (Code Generator)
	binary digit expected (Parser)
	bit field too large (* bits) (Code Generator)
	bit range check failed * (Linker)
	bitfield comparison out of range (Code Generator)
	bug: illegal __ macro * (Preprocessor)
	call depth exceeded by * (Linker)
	can’t allocate memory for arguments (Preprocessor, Parser)
	can’t allocate space for port variables: * (Code Generator)
	can’t be both far and near (Parser)
	can’t be long (Parser)
	can’t be register (Parser)
	can’t be short (Parser)
	can’t be unsigned (Parser)
	can’t call an interrupt function (Parser)
	can’t create * (Code Generator, Assembler, Linker, Optimiser)
	can’t create cross reference file * (Assembler)
	can’t create temp file (Linker)
	can’t create temp file * (Code Generator)
	can’t enter abs psect (Assembler)
	can’t find op (Assembler, Optimiser)
	can’t find space for psect * in segment * (Linker)
	can’t generate code for this expression (Code Generator)
	can’t have ’port’ variable: * (Code Generator)
	can’t have ’signed’ and ’unsigned’ together (Parser)
	can’t have an array of bits or a pointer to bit (Parser)
	can’t have array of functions (Parser)
	can’t initialize arg (Parser)
	can’t mix proto and non-proto args (Parser)
	can’t open (Linker)
	can’t open * (Code Generator, Assembler, Optimiser, Cromwell)
	can’t open avmap file * (Linker)
	can’t open checksum file * (Linker)
	can’t open command file * (Preprocessor, Linker)
	can’t open error file * (Linker)
	can’t open include file * (Assembler)
	can’t open input file * (Preprocessor, Assembler)
	can’t open output file * (Preprocessor, Assembler)
	can’t reopen * (Parser)
	can’t seek in * (Linker)
	can’t take address of register variable (Parser)
	can’t take sizeof func (Parser)
	can’t take sizeof(bit) (Parser)
	can’t take this address (Parser)
	can’t use a string in an #if (Preprocessor)
	cannot get memory (Linker)
	cannot open (Linker)
	cannot open include file * (Preprocessor)
	cast type must be scalar or void (Parser)
	char const too long (Parser)
	character not valid at this point in format specifier (Parser)
	checksum error in intel hex file *, line * (Cromwell)
	circular indirect definition of symbol * (Linker)
	class * memory space redefined: */* (Linker)
	close error (disk space?) (Parser)
	common symbol psect conflict: * (Linker)
	complex relocation not supported for -r or -l options yet (Linker)
	conflicting fnconf records (Linker)
	constant conditional branch (Code Generator)
	constant conditional branch: possible use of = instead of == (Code Generator)
	constant expression required (Parser)
	constant left operand to ? (Code Generator)
	constant operand to || or && (Code Generator)
	constant relational expression (Code Generator)
	control line * within macro expansion (Preprocessor)
	declaration of * hides outer declaration (Parser)
	declarator too complex (Parser)
	default case redefined (Parser)
	deff not supported in cp/m version (Assembler)
	def[bmsf] in text psect (Optimiser)
	degenerate signed comparison (Code Generator)
	degenerate unsigned comparison (Code Generator)
	delete what ? (Libr)
	did not recognize format of input file (Cromwell)
	digit out of range (Parser, Assembler, Optimiser)
	dimension required (Parser)
	direct range check failed * (Linker)
	directive not recognized (Assembler)
	divide by zero in #if, zero result assumed (Preprocessor)
	division by zero (Code Generator)
	double float argument required (Parser)
	duplicate -d or -h flag (Linker)
	duplicate -m flag (Linker)
	duplicate case label (Code Generator)
	duplicate label * (Parser)
	duplicate qualifier (Parser)
	duplicate qualifier key * (Parser)
	duplicate qualifier name * (Parser)
	end of file within macro argument from line * (Preprocessor)
	end of string in format specifier (Parser)
	end statement inside include file or macro (Assembler)
	entry point multiply defined (Linker)
	enum tag or { expected (Parser)
	eof in #asm (Preprocessor)
	eof in comment (Preprocessor)
	eof inside conditional (Assembler)
	eof inside macro def’n (Assembler)
	eof on string file (Parser)
	error closing output file (Code Generator, Optimiser)
	error dumping * (Cromwell)
	error in format string (Parser)
	evaluation period has expired (Driver)
	expand - bad how (Code Generator)
	expand - bad which (Code Generator)
	expected ’-’ in -a spec (Linker)
	exponent expected (Parser)
	expression error (Code Generator, Assembler, Optimiser)
	expression generates no code (Code Generator)
	expression stack overflow at op * (Preprocessor)
	expression syntax (Parser)
	expression too complex (Parser)
	external declaration inside function (Parser)
	fast interrupt can’t be used in large model (Code Generator)
	field width not valid at this point (Parser)
	file name index out of range in line no. record (Cromwell)
	filename work buffer overflow (Preprocessor)
	fixup overflow in expression * (Linker)
	fixup overflow referencing * (Linker)
	flag * unknown (Assembler)
	float param coerced to double (Parser)
	floating exponent too large (Assembler)
	floating number expected (Assembler)
	formal parameter expected after # (Preprocessor)
	function * appears in multiple call graphs: rooted at * (Linker)
	function * argument evaluation overlapped (Linker)
	function * is never called (Linker)
	function body expected (Parser)
	function declared implicit int (Parser)
	function does not take arguments (Parser, Code Generator)
	function is already ’extern’; can’t be ’static’ (Parser)
	function or function pointer required (Parser)
	functions can’t return arrays (Parser)
	functions can’t return functions (Parser)
	functions nested too deep (Code Generator)
	garbage after operands (Assembler)
	garbage on end of line (Assembler)
	hex digit expected (Parser)
	I/O error reading symbol table (Cromwell)
	ident records do not match (Linker)
	identifier expected (Parser)
	identifier redefined: * (Parser)
	identifier redefined: * (from line *) (Parser)
	illegal # command * (Preprocessor)
	illegal #if line (Preprocessor)
	illegal #undef argument (Preprocessor)
	illegal ’#’ directive (Preprocessor, Parser)
	illegal character (* decimal) in #if (Preprocessor)
	illegal character * (Parser)
	illegal character * in #if (Preprocessor)
	illegal conversion (Parser)
	illegal conversion between pointer types (Parser)
	illegal conversion of integer to pointer (Parser)
	illegal conversion of pointer to integer (Parser)
	illegal flag * (Linker)
	illegal function qualifier(s) (Parser)
	illegal initialisation (Parser)
	illegal operation on a bit variable (Parser)
	illegal operator in #if (Preprocessor)
	illegal or too many -g flags (Linker)
	illegal or too many -o flags (Linker)
	illegal or too many -p flags (Linker)
	illegal record type (Linker)
	illegal relocation size: * (Linker)
	illegal relocation type: * (Linker)
	illegal switch * (Code Generator, Assembler, Optimiser)
	illegal type for array dimension (Parser)
	illegal type for index expression (Parser)
	illegal type for switch expression (Parser)
	illegal use of void expression (Parser)
	image too big (Objtohex)
	implicit conversion of float to integer (Parser)
	implicit return at end of non-void function (Parser)
	implict signed to unsigned conversion (Parser)
	inappropriate ’else’ (Parser)
	inappropriate break/continue (Parser)
	include files nested too deep (Assembler)
	included file * was converted to lower case (Preprocessor)
	incompatible intermediate code version; should be * (Code Generator)
	incomplete * record body: length = * (Linker)
	incomplete ident record (Libr)
	incomplete record (Objtohex, Libr)
	incomplete record: * (Linker)
	incomplete record: type = * length = *
	incomplete symbol record (Libr)
	inconsistent lineno tables (Cromwell)
	inconsistent storage class (Parser)
	inconsistent symbol tables (Cromwell)
	inconsistent type (Parser)
	index offset too large (Assembler)
	initialisation syntax (Parser)
	initializer in ’extern’ declaration (Parser)
	insufficient memory for macro def’n (Assembler)
	integer constant expected (Parser)
	integer expression required (Parser)
	integral argument required (Parser)
	integral type required (Parser)
	interrupt_level should be 0 to 7 (Parser)
	invalid disable: * (Preprocessor)
	invalid format specifier or type modifier (Parser)
	invalid hex file: *, line * (Cromwell)
	invalid number syntax (Assembler, Optimiser)
	jump out of range (Assembler)
	label identifier expected (Parser)
	lexical error (Assembler, Optimiser)
	library * is badly ordered (Linker)
	library file names should have .lib extension: * (Libr)
	line does not have a newline on the end (Parser)
	line too long (Optimiser)
	local illegal outside macros (Assembler)
	local psect ’*’ conflicts with global psect of same name (Linker)
	logical type required (Parser)
	long argument required (Parser)
	macro * wasn’t defined (Preprocessor)
	macro argument after * must be absolute (Assembler)
	macro argument may not appear after local (Assembler)
	macro expansions nested too deep (Assembler)
	macro work area overflow (Preprocessor)
	member * redefined (Parser)
	members cannot be functions (Parser)
	metaregister * can’t be used directly (Code Generator)
	mismatched comparision (Code Generator)
	misplaced ’?’ or ’:’, previous operator is * (Preprocessor)
	misplaced constant in #if (Preprocessor)
	missing ’)’ (Parser)
	missing ’=’ in class spec (Linker)
	missing ’]’ (Parser)
	missing arg to -a (Parser)
	missing arg to -e (Linker)
	missing arg to -i (Parser)
	missing arg to -j (Linker)
	missing arg to -q (Linker)
	missing arg to -u (Linker)
	missing arg to -w (Linker)
	missing argument to ’pragma psect’ (Parser)
	missing argument to ’pragma switch’ (Parser)
	missing basic type: int assumed (Parser)
	missing key in avmap file (Linker)
	missing memory key in avmap file (Linker)
	missing name after pragma ’inline’ (Parser)
	missing name after pragma ’printf_check’ (Parser)
	missing newline (Preprocessor)
	missing number after % in -p option (Linker)
	missing number after pragma ’pack’ (Parser)
	missing number after pragma interrupt_level (Parser)
	missing processor name after -p (Cromwell)
	mod by zero in #if, zero result assumed (Preprocessor)
	module * defines no symbols (Libr)
	module has code below file base of * (Linker)
	multi-byte constant * isn’t portable (Preprocessor)
	multiple free: * (Code Generator)
	multiply defined symbol * (Assembler, Linker)
	near function should be static (Code Generator)
	nested #asm directive (Preprocessor)
	nested comments (Preprocessor)
	no #asm before #endasm (Preprocessor)
	no arg to -o (Assembler)
	no case labels (Code Generator)
	no end record (Linker)
	no end record found (Linker)
	no file arguments (Assembler)
	no identifier in declaration (Parser)
	no input files specified (Cromwell)
	no memory for string buffer (Parser)
	no output file format specified (Cromwell)
	no psect specified for function variable/argument allocation (Linker)
	no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)
	no space for macro def’n (Assembler)
	no start record: entry point defaults to zero (Linker)
	no. of arguments redeclared (Parser)
	nodecount = * (Code Generator)
	non-constant case label (Code Generator)
	non-prototyped function declaration: * (Parser)
	non-scalar types can’t be converted (Parser)
	non-void function returns no value (Parser)
	not a member of the struct/union * (Parser)
	not a variable identifier: * (Parser)
	not an argument: * (Parser)
	null format name (Cromwell)
	object code version is greater than * (Linker)
	object file is not absolute (Objtohex)
	only functions may be qualified interrupt (Parser)
	only functions may be void (Parser)
	only lvalues may be assigned to or modified (Parser)
	only modifier l valid with this format (Parser)
	only modifiers h and l valid with this format (Parser)
	only register storage class allowed (Parser)
	oops! -ve number of nops required! (Assembler)
	operand error (Assembler, Optimiser)
	operands of * not same pointer type (Parser)
	operands of * not same type (Parser)
	operator * in incorrect context (Preprocessor)
	out of far memory (Code Generator)
	out of memory (Code Generator, Assembler, Optimiser)
	out of memory allocating * blocks of * (Linker)
	out of memory for assembler lines (Optimiser)
	out of near memory (Code Generator)
	out of space in macro * arg expansion (Preprocessor)
	output file cannot be also an input file (Linker)
	page width must be >= * (Assembler)
	phase error (Assembler)
	phase error in macro args (Assembler)
	phase error on temporary label (Assembler)
	pointer required (Parser)
	pointer to * argument required (Parser)
	pointer to non-static object returned (Parser)
	portion of expression has no effect (Code Generator)
	possible pointer truncation (Parser)
	preprocessor assertion failure (Preprocessor)
	probable missing ’}’ in previous block (Parser)
	psect * cannot be in classes * (Linker)
	psect * memory delta redefined: */* (Linker)
	psect * memory space redefined: */* (Linker)
	psect * not loaded on * boundary (Linker)
	psect * not relocated on * boundary (Linker)
	psect * not specified in -p option (Linker)
	psect * re-orged (Linker)
	psect * selector value redefined (Linker)
	psect * type redefined: * (Linker)
	psect exceeds address limit: * (Linker)
	psect exceeds max size: * (Linker)
	psect is absolute: * (Linker)
	psect may not be local and global (Assembler)
	psect origin multiply defined: * (Linker)
	psect property redefined (Assembler)
	psect reloc redefined (Assembler)
	psect selector redefined (Linker)
	psect size redefined (Assembler)
	qualifiers redeclared (Parser)
	read error on * (Linker)
	record too long (Objtohex)
	record too long: * (Linker)
	recursive function calls: (Linker)
	recursive macro definition of * (Preprocessor)
	redefining macro * (Preprocessor)
	redundant & applied to array (Parser)
	refc == 0 (Assembler, Optimiser)
	regused - bad arg to g (Code Generator)
	relocation error (Assembler, Optimiser)
	relocation offset * out of range * (Linker)
	relocation too complex (Assembler)
	remsym error (Assembler)
	replace what ? (Libr)
	rept argument must be >= 0 (Assembler)
	seek error: * (Linker)
	segment * overlaps segment * (Linker)
	signatures do not match: * (Linker)
	signed bitfields not supported (Parser)
	simple integer expression required (Parser)
	simple type required for * (Parser)
	sizeof external array * is zero (Parser)
	sizeof yields 0 (Code Generator)
	static object has zero size: * (Code Generator)
	storage class illegal (Parser)
	storage class redeclared (Parser)
	strange character * after ## (Preprocessor)
	strange character after # * (Preprocessor)
	string concatenation across lines (Parser)
	string expected (Parser)
	string lookup failed in coff:get_string() (Cromwell)
	string too long (Assembler)
	struct/union member expected (Parser)
	struct/union redefined: * (Parser)
	struct/union required (Parser)
	struct/union tag or ’{’ expected (Parser)
	symbol * cannot be global (Linker)
	symbol * has erroneous psect: * (Linker)
	symbol * not defined in #undef (Preprocessor)
	syntax error (Assembler, Optimiser)
	syntax error in -a spec (Linker)
	syntax error in checksum list (Linker)
	syntax error in local argument (Assembler)
	text does not start at 0 (Linker)
	text offset too low (Linker)
	text record has bad length: * (Linker)
	text record has length too small: * (Linker)
	this function too large - try reducing level of optimization (Code Generator)
	this is a struct (Parser)
	this is a union (Parser)
	this is an enum (Parser)
	too few arguments (Parser)
	too few arguments for format string (Parser)
	too many (*) enumeration constants (Parser)
	too many (*) structure members (Parser)
	too many address spaces - space * ignored (Linker)
	too many arguments (Parser)
	too many arguments for format string (Parser)
	too many arguments for macro (Preprocessor)
	too many arguments in macro expansion (Preprocessor)
	too many cases in switch (Code Generator)
	too many comment lines - discarding (Assembler)
	too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)
	too many file arguments. usage: cpp [input [output]] (Preprocessor)
	too many files in coff file (Cromwell)
	too many include directories (Preprocessor)
	too many initializers (Parser)
	too many input files (Cromwell)
	too many macro parameters (Assembler)
	too many nested #* statements (Preprocessor)
	too many nested #if statements (Preprocessor)
	too many output files (Cromwell)
	too many psect class specifications (Linker)
	too many psect pragmas (Code Generator)
	too many psects (Assembler)
	too many qualifier names (Parser)
	too many relocation items (Objtohex)
	too many segment fixups (Objtohex)
	too many segments (Objtohex)
	too many symbols (Assembler)
	too many symbols (*) (Linker)
	too many symbols in * (Optimiser)
	too many temporary labels (Assembler)
	too much indirection (Parser)
	too much pushback (Preprocessor)
	type conflict (Parser)
	type modifier already specified (Parser)
	type modifiers not valid with this format (Parser)
	type redeclared (Parser)
	type specifier reqd. for proto arg (Parser)
	unable to open list file * (Linker)
	unbalanced paren’s, op is * (Preprocessor)
	undefined *: * (Parser)
	undefined enum tag: * (Parser)
	undefined identifier: * (Parser)
	undefined shift (* bits) (Code Generator)
	undefined struct/union (Parser)
	undefined struct/union: * (Parser)
	undefined symbol * (Assembler)
	undefined symbol * in #if, 0 used (Preprocessor)
	undefined symbol in fnaddr record: * (Linker)
	undefined symbol in fnbreak record: * (Linker)
	undefined symbol in fncall record: * (Linker)
	undefined symbol in fnindir record: * (Linker)
	undefined symbol in fnroot record: * (Linker)
	undefined symbol in fnsize record: * (Linker)
	undefined symbol: (Assembler, Linker)
	undefined symbols: (Linker)
	undefined temporary label (Assembler)
	undefined variable: * (Parser)
	unexpected end of file (Linker)
	unexpected eof (Parser)
	unexpected text in #control line ignored (Preprocessor)
	unexpected \ in #if (Preprocessor)
	unknown ’with’ psect referenced by psect * (Linker)
	unknown complex operator * (Linker)
	unknown fnrec type * (Linker)
	unknown format name ’*’ (Cromwell)
	unknown option * (Preprocessor)
	unknown pragma * (Parser)
	unknown predicate * (Code Generator)
	unknown psect (Optimiser)
	unknown psect: * (Linker, Optimiser)
	unknown qualifier ’*’ given to -a (Parser)
	unknown qualifier ’*’ given to -i (Parser)
	unknown record type: * (Linker)
	unknown register name * (Linker)
	unknown symbol type * (Linker)
	unreachable code (Parser)
	unreasonable matching depth (Code Generator)
	unrecognized option to -z: * (Code Generator)
	unrecognized qualifer name after ’strings’ (Parser)
	unterminated #if[n][def] block from line * (Preprocessor)
	unterminated comment in included file (Preprocessor)
	unterminated macro arg (Assembler)
	unterminated string (Assembler, Optimiser)
	unterminated string in macro body (Preprocessor, Assembler)
	unused constant: * (Parser)
	unused enum: * (Parser)
	unused label: * (Parser)
	unused member: * (Parser)
	unused structure: * (Parser)
	unused typedef: * (Parser)
	unused union: * (Parser)
	unused variable declaration: * (Parser)
	unused variable definition: * (Parser)
	upper case #include files are non-portable (Preprocessor)
	variable may be used before set: * (Code Generator)
	void function cannot return value (Parser)
	while expected (Parser)
	work buffer overflow doing * ## (Preprocessor)
	work buffer overflow: * (Preprocessor)
	write error (out of disk space?) * (Linker)
	write error on * (Assembler, Linker, Cromwell)
	write error on object file (Assembler)
	wrong number of macro arguments for * - * instead of * (Preprocessor)

	Library Functions
	ABORT
	ABS
	ACOS
	ASCTIME
	ASIN
	ASSERT
	ATAN
	ATAN2
	ATEXIT
	ATOF
	ATOI
	ATOL
	BDOS
	BDOSHL
	BIOS
	BSEARCH
	CALLOC
	CEIL
	CGETS
	CHMOD
	CLOSE
	CLRERR, CLREOF
	COS
	COSH, SINH, TANH
	CPUTS
	CREAT
	CTIME
	DI, EI
	DIV
	DUP
	EVAL_POLY
	EXECL, EXECV
	EXIT
	EXP
	FABS
	FCLOSE
	FDOPEN
	FEOF, FERROR
	FFLUSH
	FGETC
	FGETS
	FILENO
	FLOOR
	FOPEN
	FPRINTF, VFPRINTF
	FPUTC
	FPUTS
	FREAD
	FREE
	FREOPEN
	FREXP
	FSCANF, VFSCANF
	FSEEK
	FTELL
	FWRITE
	GETC
	GETCH, GETCHE
	GETCHAR
	GETENV
	GETS
	GETUID
	GETW
	GMTIME
	IM
	ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
	ISATTY
	KBHIT
	LDEXP
	LDIV
	LOCALTIME
	LOG, LOG10
	LONGJMP
	LSEEK
	MALLOC
	MEMCHR
	MEMCMP
	MEMCPY
	MEMMOVE
	MEMSET
	MODF
	OPEN
	PERROR
	PERSIST_CHECK, PERSIST_VALIDATE
	POW
	PRINTF, VPRINTF
	PUTC
	PUTCH
	PUTCHAR
	PUTS
	PUTW
	QSORT
	RAM_VECTOR, CHANGE_VECTOR, READ_RAM_VECTOR
	RAND
	READ
	REALLOC
	REMOVE
	RENAME
	REWIND
	ROM_VECTOR
	SBRK
	SCANF, VSCANF
	SETJMP
	SETUID
	SETVBUF, SETBUF
	SET_VECTOR
	SIGNAL
	SIN
	SPRINTF, VSPRINTF
	SQRT
	SRAND
	SSCANF, VSSCANF
	STAT
	STRCAT
	STRCHR, STRICHR
	STRCMP, STRICMP
	STRCPY
	STRCSPN
	STRDUP
	STRLEN
	STRNCAT
	STRNCMP, STRNICMP
	STRNCPY
	STRPBRK
	STRRCHR, STRRICHR
	STRSPN
	STRSTR, STRISTR
	STRTOK
	TAN
	TIME
	TMPFILE
	TMPNAM
	TOLOWER, TOUPPER, TOASCII
	UNGETC
	UNGETCH
	UNLINK
	VA_START, VA_ARG, VA_END
	WRITE
	XTOI
	_GETARGS

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

